SEX DIFFERENCES IN LIVER GENE EXPRESSION IN WT AND SF-1 KNOCKOUT MICE

Katja Kozinc Klenovšek, Tanja Španić, Gregor Majdič

Abstract


Liver development and function are dependent on specific gene expression profile. Many genes in the liver are differentially expressed between females and males and these sex differences are thought to be at least partially influenced by sex specific patterns of growth hormone secretion. The aim of this study was to examine whether sex chromosomes contribute to sex differences in the liver gene expression. Expression of Cyp4a10, Cyp2u1, Cux2 and Hsd3b5, which are known to be differentially expressed between sexes in adulthood, were studied in WT and SF-1 knockout mice. Steroidogenic factor 1 knockout (SF-1 KO) mice that are born without gonads were used to determine whether there are any sex differences in the gene expression even in the absence of exposure to sex steroid hormones. Gonadectomised mice were also compared to gonadally intact mice and gene expression of studied genes was examined during estrous cycle in gonadally intact female mice. Higher expression of Cux2 and Cyp4a10 was detected in gonadally intact WT females in comparison to gonadally intact WT males and higher expression of Cyp2u1 and Hsd3b5 was detected in gonadally intact WT males in comparison to gonadally intact WT females. There were no sex differences in the expression of studied genes between WT gonadectomised and SF-1 KO mice. The results of our study therefore suggest that sex differences in the liver gene expression of the four studied genes are solely dependent on sex hormones and are not influenced by sex chromosome complement.

Key words: sex difference; liver; gene expression; sex steroid hormones; sex chromosomes

 

RAZLIKE MED SPOLOMA V IZRAŽENOSTI GENOV PRI NAVADNIH MIŠIH IN MIŠIH Z IZBITIM GENOM SF-1

Razvoj in delovanje jeter sta odvisna od natanÄne izraženosti genov. Predhodne raziskave so pokazale, da so Å¡tevilni geni v jetrih razliÄno izraženi med spoloma, te razlike pa naj bi bile vsaj delno posledica spolnih razlik v izloÄanju rastnega hormona. Cilj opisane raziskave je bil prouÄiti, ali tudi spolni kromosomi vplivajo na spolne razlike v izraženosti genov v jetrih.  V raziskavi smo pri navadnih miÅ¡ih in miÅ¡ih z izbitim genom SF-1 (SF-1 KO) preverili izraženost genov Cyp4a10, Cyp2u1, Cux2 in Hsd3b5, za katere je znano, da se v odraslih jetrih izražajo drugaÄe pri samcih kot pri samicah. MiÅ¡i SF-1 KO se rodijo brez spolnih žlez in zaradi tega niso nikoli izpostavljene spolnim hormonom, razlike med spoloma v izraženosti genov bi zato pri teh miÅ¡ih kazale na neposreden vpliv spolnih kromosomov. Dodatno smo primerjali med seboj tudi miÅ¡i, ki smo jim odstranili spolne žleze, ter samice v razliÄnih fazah spolnega cikla. Ugotovili smo viÅ¡jo izraženost genov Cux2 in Cyp4a10 pri navadnih samicah s spolnimi žlezami v primerjavi z navadnimi samci s spolnimi žlezami. Ugotovili smo tudi viÅ¡jo izraženost genov Cyp2u1 in Hsd3b5 pri navadnih samcih s spolnimi žlezami v primerjavi z navadnimi samicami s spolnimi žlezami. Nismo pa ugotovili vpliva odstranitve spolnih žlez ali vpliva izbitja gena SF-1 na spolne razlike, saj le-te niso bile prisotne ne med samci in samicami z odstranjenimi spolnimi žlezami kot tudi ne med samci in samicami z izbitim genom SF-1. Ti rezultati kažejo, da so vse razlike med spoloma v izraženosti genov v jetrih popolnoma odvisne od prisotnosti in vpliva spolnih hormonov, ki jih proizvajajo spolne žleze.

KljuÄne besede: spolne razlike; jetra; izraženost genov; spolni hormoni; spolni kromosomi 

 


Full Text:

PDF

References


(1) Li T, Huang J, Jiang Y, Zeng Y, He F, Zhang MQ et al. Multi-stage analysis of gene expression and transcription regulation in C57/B6 mouse liver development. Genomics 2009;93(3):235-42.

(2) Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol 2006;20(6):1333-51.

(3) Wauthier V, Waxman DJ. Sex-specific early growth hormone response genes in rat liver. Mol Endocrinol 2008;22(8):1962-74.

(4) Yates FE, Herbst AL, Urquhart J. Sex difference in rate of ring A reduction of delta 4-3-keto-steroids in vitro by rat liver. Endocrinology 1958;63(6):887-902.

(5) Zhang Y, Laz EV, Waxman DJ. Dynamic, sex-differential STAT5 and BCL6 binding to sex-biased, growth hormone-regulated genes in adult mouse liver. Mol Cell Biol 2012;32(4):880-96.

(6) Conforto TL, Waxman DJ. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood. Biol Sex Differ 2012;3:9.

(7) Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 2009;76(2):215-28.

(8) Mode A, Gustafsson JA. Sex and the liver - a journey through five decades. Drug Metab Rev 2006;38(1-2):197-207.

(9) Gatti DM, Zhao N, Chesler EJ, Bradford BU, Shabalin AA, Yordanova R et al. Sex-specific gene expression in the BXD mouse liver. Physiol Genomics 2010;42(3):456-68.

(10) Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Molecular Endocrinology 1992;6:1249-58.

(11) Parker KL, Rice DA, Lala DS, Ikeda Y, Luo X, Wong M et al. Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res 2002;57:19-36.

(12) Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen W, Nachtigal MW et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes and Development 1994;8:2302-12.

(13) Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77:481-90.

(14) Majdic G, Young M, Gomez-Sanchez E, Anderson P, Szczepaniak LS, Dobbins RL et al. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 2002;143(2):607-14.

(15) Lee JS, Ward WO, Liu J, Ren H, Vallanat B, Delker D et al. Hepatic xenobiotic metabolizing enzyme and transporter gene expression through the life stages of the mouse. PLoS One 2011;6(9):e24381.

(16) Renaud HJ, Cui JY, Khan M, Klaassen CD. Tissue distribution and gender-divergent expression of 78 cytochrome P450 mRNAs in mice. Toxicol Sci 2011;124(2):261-77.

(17) Zhang Y, Klaassen CD. Hormonal regulation of Cyp4a isoforms in mouse liver and kidney. Xenobiotica 2013;43(12):1055-63.

(18) Conforto TL, Zhang Y, Sherman J, Waxman DJ. Impact of CUX2 on the female mouse liver transcriptome: activation of female-biased genes and repression of male-biased genes. Mol Cell Biol 2012;32(22):4611-27.

(19) Wong JS, Ye X, Muhlenkamp CR, Gill SS. Effect of a peroxisome proliferator on 3 beta-hydroxysteroid dehydrogenase. Biochem Biophys Res Commun 2002;293(1):549-53.

(20) Dozmorov I, Bartke A, Miller RA. Array-based expression analysis of mouse liver genes: effect of age and of the longevity mutant Prop1df. J Gerontol A Biol Sci Med Sci 2001;56(2):B72-80.

(21) Kwekel JC, Desai VG, Moland CL, Branham WS, Fuscoe JC. Age and sex dependent changes in liver gene expression during the life cycle of the rat. BMC Genomics 2010;11:675.

(22) Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29(9):e45.

(23) Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3(7):RESEARCH0034.

(24) Wiwi CA, Gupte M, Waxman DJ. Sexually dimorphic P450 gene expression in liver-specific hepatocyte nuclear factor 4alpha-deficient mice. Mol Endocrinol 2004;18(8):1975-87.

(25) Fernandez-Perez L, Guerra B, Diaz-Chico JC, Flores-Morales A. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates. Front Endocrinol (Lausanne) 2013;4:66.

(26) Meinhardt UJ, Ho KK. Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf) 2006;65(4):413-22.

(27) Jarukamjorn K, Sakuma T, Jaruchotikamol A, Ishino Y, Oguro M, Nemoto N. Modified expression of cytochrome P450 mRNAs by growth hormone in mouse liver. Toxicology 2006;219(1-3):97-105.

(28) Nojima K, Sugimoto K, Ueda H, Babaya N, Ikegami H, Rakugi H. Analysis of hepatic gene expression profile in a spontaneous mouse model of type 2 diabetes under a high sucrose diet. Endocr J 2013;60(3):261-74.

(29) Conforto TL, Steinhardt GFt, Waxman DJ. Cross Talk Between GH-Regulated Transcription Factors HNF6 and CUX2 in Adult Mouse Liver. Mol Endocrinol 2015;29(9):1286-302.

(30) Sisk CL, Zehr JL. Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 2005;26(3-4):163-74.




DOI: https://doi.org/10.26873/SVR-423-2017

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Our journal is indexed in:
Science Citation Index Expanded, Journal Citation Reports/Science Edition, Agris, Biomedicina Slovenica, CAB Abstracts, IVSI Urlich’s International Periodicals Directory
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si