FEMALE GONADAL HORMONES ARE A RISK FACTOR FOR DEVELOPING ATHEROSCLEROTIC CHANGES IN C57BL/6J MICE ON ATHEROGENIC DIET
DOI:
https://doi.org/10.26873/SVR-1519-2023Keywords:
atherosclerosis, Paigen diet, sex, gonadal hormones, mouse models, lipids and cholesterolAbstract
In humans, estrogens are considered protective factor against atherosclerosis because the risk increases in postmenopausal women. However, it is not clear whether estrogens are the only factor, whether sex chromosomes also have an influence, and whether estrogens play the same role in all mammals. The mouse line C57BL/6J is prone to develop atherosclerotic changes in the largest arteries after prolonged feeding of a high-fat diet containing cholesterol and cholate (Paigen diet). We aimed to examine effect of sex hormones and sex chromosome complement on the development of atherosclerotic plaques using agonadal SF-1 knockout mouse on C57BL/6J background. Gonadally intact and prepubertally gonadectomized WT and agonadal SF-1 knockout C57BL/6J mice of both sexes were exposed to a Paigen diet and a control diet for 20 weeks. We monitored their body weight, food intake, and serum lipid profile. The aortas were examined by the en face method, and the cross sections of the aortic bulbs were stained for lipid content. In all groups of mice, atherosclerotic changes were small and confined to the aortic bulb. The formation of atherosclerotic plaques was sex- and hormone-dependent, as female animals with functioning ovaries developed the most prominent atherosclerotic plaques. Gonadally intact females were also the only group that gained weight comparably on control or atherogenic diet. Diet affected blood biochemistry, but there were almost no significant differences between groups in serum lipid levels. Results indicated main mechanism causing sex-dependent differences in atherosclerosis depends on sex hormones rather than sex chromosomes. Our results also suggest that a mouse model of dietary induced atherosclerosis is of limited use to study the mechanisms of atherosclerosis in humans because the presence of estrogens impairs lipid metabolism and contributes to the formation of atherosclerotic plaques.
ŽENSKI SPOLNI HORMONI PREDSTAVLJAJO DEJAVNIK TVEGANJA ZA NASTANEK ATEROSKLEROZNIH SPREMEMB PRI MIŠIH LINIJE C57BL/6J NA ATEROGENI DIETI
Izvleček: Pri ženskah se v postmenopavznem obdobju poveča tveganje za razvoj ateroskleroze, zato je splošno sprejeto, da estrogeni hormoni varujejo ožilje pred razvojem tega žilnega obolenja. Ni pa še popolnoma raziskano, ali so estrogeni poglavitni dejavnik, ali imajo vpliv tudi spolni kromosomi in ali je vpliv spolnih hormonov enak med sesalci. Živalski modeli za proučevanje ateroskleroznega obolenja so redki, eden izmed njih so miši linije C57BL/6J, ki lahko spontano razvijejo aterosklerotične spremembe v večjih telesnih arterijah, če se jih dlje časa hrani s hrano z visoko vsebnostjo maščob, z dodatkom holesterola in holata - s t.i. aterogeno dieto po Paigenu. V raziskavi smo želeli proučiti vpliv spolnih hormonov in spolnih kromosomov na razvoj aterosklerotičnih plakov v žilah s pomočjo modela miši z izbitim genom SF-1, ki se razvijejo brez spolnih organov. 20 tednov smo mišim dajali hrano po receptu Paigen oziroma kontrolno hrano z nižjo vsebnostjo maščob. Miši obeh spolov so bile bodisi brez spolnih organov zaradi izbitega gena SF-1 (na ozadju C57BL/6J), bodisi smo jim gonade operativno odstranili pred puberteto. Tretjino samcev in samic smo pustili intaktne z gonadami. Spremljali smo telesno težo živali, povprečno porabo hrane in opravili analizo serumskih lipidov. Pregledali smo preparirane aorte po metodi en-face ter ocenili obseg plakov in maščob na prečnih rezih aortnega korena na nivoju aortnih zaklopk s histološkim barvanjem in analizo mikroskopske slike. Pri vseh skupinah miši, ki so bile hranjene z aterogeno dieto, so bile aterosklerotične spremembe relativno majhne in omejene na aortni koren. Obseg plakov je bil odvisen od kromosomskega spola in prisotnosti hormonov, plaki so bili najbolj očitni pri samicah z jajčniki. Istočasno so bile intaktne samice edina skupina živali, ki so podobno pridobivale na teži tako na aterogeni kot kontrolni hrani, pri ostalih skupinah so živali na aterogeni dieti priraščale bistveno manj. Vrsta hrane je imela vpliv na serumski lipidni profil, vendar praktično ni bilo statistično značilnih razlik med različnimi skupinami živali in analize krvnega seruma nismo mogli povezati z drugimi ugotovljenimi odstopanji pri samicah. Rezultati raziskave kažejo, da so glavni povod za spolne razlike pri razvoju aterosklerotičnih sprememb spolni hormoni in ne spolni kromosom. Hkrati pa rezultati postavljajo pod vprašaj uporabnost mišjih modelov za proučevanje ateroskleroze, ki jo induciramo s prehrano, saj prisotnost estrogenov – obratno kot pri ljudeh - pri miših negativno vpliva na presnovo lipidov in doprinese k izoblikovanju aterosklerotičnih plakov.
Ključne besede: ateroskleroza; dieta po Paigenu; spol; spolni hormoni; miš, lipidi in holesterol
References
● 1. Lusis A. Atherosclerosis. Nature. 2000; 407(6801): 233–41.
● 2. Leong XF, Ng CY, Jaarin K. Animal mod-els in cardiovascular research: hypertension and atherosclerosis. Biomed Res Int 2015; 2015: e528757, 11 pages. doi:10.1155/2015/528757.
● 3. Getz GS, Reardon CA. Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26(2): 242–9.
● 4. Lee YT, Lin HY, Chan YWF, et al. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis 2017; 16(1): 12.
● 5. Veseli BE, Perrota P, De Meyer GRA, et al. Animal models of atherosclerosis. Eur J Pharma-col. 2017; 816(April): 3–13.
● 6. Zou MH, Shen YH, Zhang X, et al. Dare to Compare. Development of atherosclerotic le-sions in human, mouse, and zebrafish. Front Car-diovasc Med 2020; 7: e109. doi: 10.3389/fcvm.2020.00109
● 7. Chen S, Markman JL, Shimada K, et al. Sex-specific effects of the Nlrp3 inflammasome on atherogenesis in LDL receptor-deficient mice. JACC Basic Transl Sci 2020; 5(6): 582–98.
● 8. Ishida BY, Blanche PJ, Nichols A V, Yash-ar M, Paigen B. Effects of atherogenic diet con-sumption on lipoproteins in mouse strains C57BL/6 and C3H. J Lipid Res 1991; 32(4): 559–68.
● 9. Paigen B, Morrow A, Holmes PA, Mitchell D WR. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987; 68(3): 231–40.
● 10. TS M, TB C. Estrogen replacement thera-py, atherosclerosis, and vascular function. Cardio-vasc Res 2002; 53(3): 605–19.
● 11. Vlachopoulos C, Ioakeimidis N, Miner M, et al. Testosterone deficiency: a determinant of aortic stiffness in men. Atherosclerosis. 2014; 233(1): 278–83.
● 12. Fairweather D. Sex differences in inflam-mation during atherosclerosis. Clin Med Insights Cardiol 2015; 8(Suppl 3): 49–59.
● 13. Dos Santos RL, Da Silva FB, Ribeiro RF, Stefanon I. Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig 2014; 18(2): 89–103.
● 14. Ventura-Clapier R, Dworatzek E, Seeland U, et al. Sex in basic research: concepts in the car-diovascular field. Cardiovasc Res 2017; 113(7): 711–24.
● 15. Man JJ, Beckman JA, Jaffe IZ. Sex as a biological variable in atherosclerosis. Circ Res 2020; 126(9): 1297–319.
● 16. Bywaters BC, Pedraza G, Trache A, Rivera GM. Endothelial NCK2 promotes atherosclerosis progression in male but not female Nck1-null atheroprone mice. Front Cardiovasc Med 2022; 9: e955027. doi: 10.3389/fcvm.2022.955027.
● 17. Bourassa P, Milos PM, Gaynor BJ, Bres-low JL, Aiello RJ. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 1996; 93(19): 10022–7.
● 18. McRobb L, Handelsman DJ, Heather AK. Androgen-induced progression of arterial calcifica-tion in apolipoprotein E-null mice is uncoupled from plaque growth and lipid levels. Endocrinology 2009; 150(2): 841–8.
● 19. Venegas-Pino DE, Wang PW, Stoute HK, et al. Sex-specific differences in an ApoE-/-:Ins2+/Akita mouse model of accelerated athero-sclerosis. Am J Pathol 2016; 186(1): 67–77.
● 20. Pereira TMC, Nogueira B v., Lima LCF, et al. Cardiac and vascular changes in elderly athero-sclerotic mice: the influence of gender. Lipids Health Dis 2010; 9: e87. doi: 10.1186/1476-511X-9-87
● 21. Smith DD, Tan X, Tawfik O, Milne G, Stechschulte DJ, Dileepan KN. Increased aortic atherosclerotic plaque development in female apolipoprotein E-null mice is associated with ele-vated thromboxane A2 and decreased prostacyclin production. J Physiol Pharmacol 2010; 61(3): 309–16.
● 22. Marek I, Canu M, Cordasic N, et al. Sex differences in the development of vascular and renal lesions in mice with a simultaneous deficiency of Apoe and the integrin chain Itga8. Biol Sex Dif-fer 2017; 8(19): 1–13.
● 23. Maeda N, Johnson L, Kim S, Hagaman J, Friedman M, Reddick R. Anatomical differences and atherosclerosis in apolipoprotein E - deficient mice with 129/SvEv and C57BL/6 genetic back-grounds. Atherosclerosis 2007; 195(1): 75–82.
● 24. Petrovan RJ, Kaplan CD, Reisfeld RA, Curtiss LK. DNA vaccination against VEGF re-ceptor 2 reduces atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2007; 27(5): 1095–100.
● 25. Man JJ, Beckman JA, Jaffe IZ. Sex as a biological variable in atherosclerosis. Circ Res 2020; 126(9): 1297–319.
● 26. Luo X, Ikeda Y, Lala D, Baity L, Meade J, Parker K. A cell-specific nuclear receptor plays es-sential roles in adrenal and gonadal development. Endocr Res 1995; 21(1/2): 517–24.
● 27. Majdic G, Young M, Gomez-Sanchez E, et al. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 2013; 143(3): 607–14.
● 28. Büdefeld T, Tobet SA, Majdic G. Steroidogenic factor 1 and the central nervous sys-tem. J Neuroendocrinol 2012; 24(1): 225–35.
● 29. Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, Witzrum JL. ApoE-deficient mice are a model of lipoprotein oxidation in atherogene-sis. Arterioscler Thromb Vasc Biol. 1994; 14(4): 605–16.
● 30. Centa M, Ketelhuth DFJ, Malin S, Gisterå A. Quantification of atherosclerosis in mice. J Vis Exp 2019; 148: e1–9. doi: 10.3791/59828.
● 31. Venegas-Pino DE, Banko N, Khan MI, Shi Y, Werstuck GH. Quantitative analysis and characterization of atherosclerotic lesions in the murine aortic sinus. J Vis Exp 2013 Dec 7; (82): e50933. doi: 10.3791/50933..
● 32. Büdefeld T, Grgurevic N, Tobet SA, Maj-dic G. Sex differences in brain developing in the presence or absence of gonads. Dev Neurobiol 2008; 68(7): 981–95.
● 33. Liu Y, Meyer C, Xu C, et al. Animal mod-els of chronic liver diseases. Am J Physiol Gastro-intest Liver Physiol 2013; 304: 449–68.
● 34. Vinué Á, Herrero-Cervera A, González-Navarro H. Understanding the impact of dietary cholesterol on chronic metabolic diseases through studies in rodent models. Nutrients 2018; 10(7): e939. doi: 10.3390/nu10070939
● 35. Arnold AP, Cassis LA, Eghbali M, Reue K, Sandberg K. Sex hormones and sex chromo-somes cause sex differences in the development of cardiovascular diseases. Arterioscler Thromb Vasc Biol 2017; 37(5): 746–56.
● 36. Surra JC, Guillén N, Arbonés-Mainar JM, et al. Sex as a profound modifier of atherosclerotic lesion development in apolipoprotein E-deficient mice with different genetic backgrounds. J Athero-scler Thromb 2010; 17(7): 712–21.
● 37. Caligiuri G, Nicoletti A, Zhou X, Törn-berg I, Hansson GK. Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis 1999; 145(2): 301–8.
● 38. Paigen B, Morrow A, Brandon C, Mitchell D HP. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 1985; 57(1): 65–73.
● 39. Han J, Ritchey B, Opoku E, Smith JD. Fi-ne mapping of the mouse Ath28 locus yields three atherosclerosis modifying sub-regions. Genes 2022; 13(1): e70. doi: 10.3390/genes13010070.
● 40. Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res 2021; 117(13): 2525–36.
● 41. Kovanen PT, Bot I. Mast cells in athero-sclerotic cardiovascular disease: activators and ac-tions. Eur J Pharmacol 2017; 816(Sept): 37–46.
● 42. Link JC, Chen X, Prien C, et al. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes. Arterio-scler Thromb Vasc Biol 2015; 35(8): 1778–86.
● 43. Shelton KA, Cline JM, Cann JA. 17-β Es-tradiol reduces atherosclerosis without exacerbating lupus in ovariectomized systemic lupus erythemato-sus-susceptible LDLr-/- mice. Atherosclerosis 2013; 227(2): 228–35.
● 44. Marsh MM, Walker VR, Curtiss LK, Ban-ka CL. Protection against atherosclerosis by estro-gen is independent of plasma cholesterol levels in LDL receptor-deficient mice. J Lipid Res1999; 40(5): 893-900.
● 45. Clark M, Centner AM, Ukhanov V, Nagpal R, Salazar G. Gallic acid ameliorates athero-sclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in Ap-oE−/− mice. J Nutr Biochem. 2022; 110: e109132. doi: 10.1016/j.jnutbio.2022.109132
● 46. Chen W, Xing J, Liu X, Wang S, Xing D. The role and transformative potential of IL-19 in atherosclerosis. Cytokine Growth Factor Rev 2021; 62: 70–82. doi: 10.1016/j.cytogfr.2021.09.001
● 47. Merat S, Fruebis J, Sutphin M, Silvestre M, Reaven P. Effect of aging on aortic expression of the vascular cell adhesion molecule-1 and athero-sclerosis in murine models of atherosclerosis. J Gerontol A Biol Sci Med Sci 2000; 55(2): B85–94.
● 48. Villablanca A, Lubahn D, Shelby L, Lloyd K, Barthold S. Susceptibility to early atherosclerosis in male mice is mediated by estrogen receptor al-pha. Arterioscler Thromb Vasc Biol 2004; 24(6): 1055–61.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Malan Štrbenc, Katja Kozinc Klenovšek, Gregor Majdič *

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.