ISOLATION OF LIVE CELLS FROM DIFFERENT MICE TISSUES UP TO NINE DAYS AFTER DEATH

Authors

  • Gregor 1 Institute for preclinical sciences, University of Ljubljana Veterinary faculty https://orcid.org/0000-0001-9620-2683
  • Metka Voga Institute for preclinical sciences, University of Ljubljana Veterinary faculty
  • Ana Pleterski Institute for preclinical sciences, University of Ljubljana Veterinary faculty

DOI:

https://doi.org/10.26873/SVR-1155-2021

Abstract

Abstract: Some limited reports suggest that cells can survive in the cadavers for much longer than it was previously thought.  In our study we explored how time after death, tissue type (muscle, brain and adipose tissue), storage temperature of cadavers (4 °C or at room temperature) and form of tissue storage (stored as cadavers or tissue pieces in phosphate buffered saline) affect the success of harvesting live cells from mice after death. Cells were isolated from dead tissues and grown in standard conditions. Some cells were used for RNA extraction and RT² Profiler™ PCR Array for cell lineage identification was performed to establish which lineages the cells obtained from post mortem tissues belong to. Results of our study showed that viable cells can be regularly isolated from muscle and brain tissue 3 days post mortem and with difficulty up to 6 days post mortem. Viable cells from brain tissue can be isolated up to 9 days post mortem. No cells were isolated from adipose tissue except immediately after death. In all instances viable cells were isolated only when tissues were stored at 4 °C. Tissue storage did not affect cell isolation. Isolated cells were progenitors from different germ layers. Our results show that live cells could be obtained from mouse cadavers several days after death.

Key words: mouse; cadaver; stem cells; brain; muscle; adipose tissue

 

IZOLACIJA ŽIVIH CELIC IZ RAZLIČNIH TKIV MIŠI DO DEVET DNI PO SMRTI

 

Izvleček: Nekatere raziskave kažejo, da je preživetje celic v truplih precej daljše, kot je bilo znano do sedaj. V naši raziskavi smo proučevali, kako na uspešnost izolacije živih celic po smrti miši vplivajo različen čas izolacije po smrti, vrsta tkiva (mišično, možgansko in maščobno), temperatura shranjevanja trupel ter oblika shranjenega tkiva (kot koščki tkiv ali kot celi kadavri). Izolacija in gojenje celic iz tkiv mrtvih miši sta potekali pod standardnimi pogoji. Da bi ugotovili, katerim celičnim linijam pripadajo izolirane celice, je bil del celic uporabljen za izolacijo RNK in nadaljno uporabo v sistemu identifikacije izvornih celičnih linij z verižno reakcijo s polimerazo v realnem času. Rezultati naše raziskave so pokazali, da je žive celice mogoče izolirati iz mišičnega in možganskega tkiva 3 dni po smrti, pogojno tudi do 6 dni po smrti. Iz možganskega tkiva je bilo žive celice mogoče izolirati tudi do 9 dni po smrti. Iz maščobnega tkiva je bilo celice mogoče izolirati zgolj takoj po smrti, ne pa tudi v kasnejših časovnih intervalih. V vseh primerih so bile celice izolirane samo v primeru shranjevanja tkiv pri 4°C. Oblika shranjenega tkiva na izolacijo celic ni vplivala. Izolirane celice so pripadale različnim zarodnim plastem. Rezultati raziskave so pokazali, da je žive celice iz mišjih trupel mogoče izolirati tudi več dni po smrti.

Ključne besede: miš; truplo; matične celice; možgansko tkivo; mišično tkivo; maščobno tkivo

References

→ 1. Leming MR, Dickinson GE. Understanding dying, death, and bereavement. 4th. ed. Fort Warth : Harcourt Brace College Publishers, 1998: 518 str.

→ 2. Blazar BR, Lasky LC, Perentesis JP, et al. Successful donor cell engraftment in a recipient of bone marrow from a cadaveric donor. Blood 1986; 67(6): 1655–60. doi: 10.1182/blood.V67.6.1655.1655

→ 3. Ciancio G. Donor bone marrow infusion in cadaveric renal transplantation. Transplant Proc 2003; 35(2): 871–2. doi: 10.1016/s0041-1345(02)04034-4

→ 4. Kapelushnik J, Aker M, Pugatsch T, Samuel S, Salvin S. Bone marrow transplantation from a cadaveric donor. Bone Marrow Transplant 1998; 21: 857–8. doi: 10.1038/sj.bmt.1701165

→ 5. Erker L, Azuma H, Lee AY, et al. Therapeutic liver reconstitution with murine cells isolated long after death. Gastroenterology 2010; 139(3): 1019–29. doi: 10.1053/j.gastro.2010.05.082

→ 6. Senn P, Oshima K, Teo D, Grimm C, Heller S. Robust postmortem survival of murine vestibular and cochlear stem cells. J Assoc Res Otolaryngol 2007; 8(2): 194–204. doi: 10.1007/s10162-007-0079-6

→ 9. Okonkwo C, Singh M. Recovery of fibroblast-like cells from refrigerated goat skin up to 41 d of animal death. In Vitro Cell Dev Biol Anim 2015; 51(5): 463–9. doi: 10.1007/s11626-014-9856-9

→ 10. Walcott B, Singh M, Hatti Kaul R. Recovery of proliferative cells up to 15- and 49-day postmortem from bovine skin stored at 25 °C and 4 °C, respectively. Cogent Biol 2017; 3(1): e1333760. doi: 10.1080/23312025.2017.1333760

→ 11. Shikh Alsook MK, Gabriel A, Piret J, et al. Tissues from equine cadaver ligaments up to 72 hours of post-mortem: a promising reservoir of stem cells. Stem Cell Res Ther 2015; 6: e253. doi: 10.1186/s13287-015-0250-7

→ 12. Latil M, Rocheteau P, Chatre L, et al. Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nat Commun 2012; 3: e903. doi: 10.1038/ncomms1890

→ 13. Valente S, Alviano F, Caivarella C, et al. Human cadavermultipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years. Stem Cell Res Ther 2014; 5(1): e8. doi: 10.1186/scrt397

→ 14. Pozhitkov AE, Neme R, Domazet-Loso T, et al. Tracing the dynamics of gene transcripts after organismal death. Open Biol 2017; 7(1): e160267. doi: 10.1098/rsob.160267

→ 15. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA,Gage FH. Progenitor cells from human brain after death. Nature 2001; 411(6833): 42–3. doi: 10.1038/35075141

→ 16. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O'Dowd DK, Klassen H. Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res 2003; 74(6): 838–51. doi: 10.1002/jnr.10854

→ 17. Klassen H, Ziaeian B, Kirov, II, Young MJ, Schwartz PH. Isolation of retinal progenitor cells from post-mortem human tissue and comparison with autologous brain progenitors. J Neurosci Res 2004; 77(3): 334–43. doi: 10.1002/jnr.20183

→ 18. Macotela Y, Emanuelli B, Mori MA, et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 2012; 61: 1691–9. doi: 10.2337/db11-1753/-/DC1

→ 19. Kishi K, Imanishi N, Ohara H, et al. Distribution of adipose-derived stem cells in adipose tissues from human cadavers. J Plast Reconstr Aesthet Surg 2010; 63(10): 1717–22. doi: 10.1016/j.bjps.2009.10.020

→ 20. Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L,Casteilla L. From heterogeneity to plasticity in adipose tissues: Site-specific differences. Exp Cell Res 2006; 312(6): 727–36. doi: 10.1016/j.yexcr.2005.11.021

→ 21. Chen L, Peng EJ, Zeng XY, Zhuang QY,Ye ZQ. Comparison of the proliferation, viability, and differentiation capacity of adipose-derived stem cells from different anatomic sites in rabbits. Cells Tissues Organs 2012; 196(1): 13–22. doi: 10.1159/000330796

→ 22. Tsekouras A, Mantas D, Tsilimigras DI, Moris D, Kontos M, Zografos GC. Comparison of the viability and yield of adipose-derived stem cells (ascs) from different donor areas. In Vivo 2017; 31(6): 1229–34. doi: 10.21873/invivo.11196

→ 23. Reumann MK, Linnemann C, Aspera-Werz RH, et al. Donor site location is critical for proliferation, stem cell capacity, and osteogenic differentiation of adipose mesenchymal stem/stromal cells: Implications for bone tissue engineering. Int J Mol Sci 2018; 19(7): e1868. doi: 10.3390/ijms19071868

→ 24. Mo J, Srour EF, Rosen ED. The frequency of proliferative stromal cells in adipose tissue varies between inbred mouse strains. J Stem Cells Regen Med 2009; 5(1): 23–9. doi: 10.46582/jsrm.0501005

→ 25. Michalova J, Savvulidi F, Sefc L, Forgacova K, Necas E. Cadaveric bone marrow as potential source of hematopoietic stem cells for transplantation. Chimerism 2011; 2(3): 86–7. doi: 10.4161/chim.2.3.17917

→ 26. Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5): 617–28. doi: 10.1016/j.devcel.2005.09.010

→ 27. Mohyeldin A, Garzon-Muvdi T,Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 2010; 7(2): 150–61. doi: 10.1016/j.stem.2010.07.007

Downloads

Published

2021-12-31

How to Cite

1, G., Voga, M., & Pleterski, A. (2021). ISOLATION OF LIVE CELLS FROM DIFFERENT MICE TISSUES UP TO NINE DAYS AFTER DEATH. SLOVENIAN VETERINARY RESEARCH, 58(4). https://doi.org/10.26873/SVR-1155-2021

Issue

Section

Original Research Article