CHANGES IN BIOCHEMICAL MARKERS IN BROILER CHICKENS EXPOSED TO GADOLINIUM AND LANTHANUM ORTHOVANADATE NANOPARTICLES
DOI:
https://doi.org/10.26873/SVR-1933-2024Keywords:
gadolinium orthovanadate nanoparticles, lanthanum orthovanadate nanoparticles, biochemical markers, broiler chickens, blood serumAbstract
In our research, we were interested in the presence of changes in the biochemical profile of the blood serum of broiler chickens under the influence of nanoparticles of gadolinium orthovanadate (NP GdVO4:Eu3+), lanthanum orthovanadate (NP LaVO4:Eu3+) and their mixture in therapeutic doses, which were established by us in previous studies on white rats. Day-old broiler chickens of the Cobb 500 cross (n=150) were used as the object of study. Chickens of the experimental group I received NP GdVO4:Eu3+ for 10 days at a dose of 0.2 mg/L of drinking water, experimental group II – NP LaVO4:Eu3+ at a dose of 0.2 mg/L of drinking water, experimental group III – NP GdVO4:Eu3+ and NP LaVO4:Eu3+ at a dose of 0.2 mg/L of drinking water (on average, chickens received 0.09 (0.13-0.05) mg/kg body weight of NP) and chickens of the experimental group IV received with water the veterinary vitamin drug Devivit Complex to compare the antioxidant effect at a dose of 0.3 ml/L of drinking water, chickens of the control group received drinking water without additives. After 10 days, NP administration was stopped and the chickens were observed for another 5 days. The administration of these nanoparticles to broiler chickens for 10 days was found to lead to a decrease in lipid metabolism (total cholesterol and triglycerides), protein metabolism (uric acid) and lipid peroxidation (diene conjugates and malondialdehyde) against the background of activation of carbohydrate metabolism (increased glucose concentration) and activity of hepatospecific enzymes (alanine and aspartate aminotransferases) with a prolonged effect after discontinuation of administration. The data obtained show that rare earth element orthovanadates nanoparticles have antioxidant properties. These nanoparticles are promising candidates for use in feed additives and veterinary drugs with an adaptogenic effect.
Spremembe biokemičnih označevalcev pri pitovnih piščancih, izpostavljenih nanodelcem gadolinijevega in lantanovega ortovanadata
Izvleček: V raziskavi nas je zanimala prisotnost sprememb v biokemičnem profilu krvnega seruma piščancev brojlerjev pod vplivom nanodelcev gadolinijevega ortovanadata (NP GdVO4:Eu3+), lantanovega ortovanadata (NP LaVO4:Eu3+) in njihove mešanice v terapevtskih odmerkih, ki smo jih ugotovili v prejšnjih študijah na belih podganah. Raziskava je bila izvedena na enodnevnih brojlerjih Cobb 500 cross (n = 150). Piščanci eksperimentalne skupine I so 10 dni prejemali NP GdVO4:Eu3+ v odmerku 0,2 mg/l pitne vode, piščanci eksperimentalne skupine II – NP LaVO4:Eu3+ v odmerku 0,2 mg/l pitne vode, piščanci eksperimentalne skupine III pa NP GdVO4:Eu3+ in NP LaVO4:Eu3+ v odmerku 0,2 mg/l pitne vode (v povprečju so piščanci prejemali 0,09 (0,13–0,05) mg/kg telesne mase NP). Piščanci poskusne skupine IV so z vodo prejemali veterinarski vitaminski pripravek Devivit Complex v odmerku 0,3 ml/l pitne vode za primerjavo antioksidativnega učinka, piščanci kontrolne skupine pa pitno vodo brez dodatkov. Po 10 dneh smo prenehali dajati NP in piščance opazovali še 5 dni. Ugotovili smo, da je 10-dnevno dajanje omenjenih nanodelcev piščancem brojlerjem povzročilo zmanjšanje presnove lipidov (skupnega holesterola in trigliceridov), presnove beljakovin (sečne kisline) in peroksidacije lipidov (dienskih konjugatov in malondialdehida) ob aktivaciji presnove ogljikovih hidratov (povečani koncentraciji glukoze) in aktivnosti hepatospecifičnih encimov (alanina in aspartat aminotransferaze) s podaljšanim učinkom po prekinitvi dajanja. Pridobljeni podatki kažejo, da imajo nanodelci ortovanadatov redkih zemeljskih elementov antioksidativne lastnosti, zato so obetavni kandidati za uporabo v krmnih dodatkih in veterinarskih zdravilih z adaptogenim vplivom.
Ključne besede: nanodelci gadolinijevega ortovanadata; nanodelci lantanovega ortovanadata; biokemični označevalci; piščanci brojlerji; krvni serum
References
Akinyemi F, Adewole D. Environmental Stress in Chickens and the Potential Effectiveness of Dietary Vitamin Supplementation. Front Anim Sci 2021; 2: 775311. doi:10.3389/fanim.2021.775311
Basak S, Sengupta S, Chattopadhyay K. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys Rev 2019; 11(6): 851–72. doi:10.1007/s12551-019-00580-9
Biochemical methods of animal blood research: methodological recommendations for doctors of chemical and toxicological departments of state laboratories of veterinary medicine of Ukraine, trainees of faculties of advanced training and students of the faculty of veterinary medicine. Kyiv: VAT «Bilotserkivska drukarnya», 2004: 104. https://rep.btsau.edu.ua/bitstream/BNAU/446/1/Biohimichni_metody_doslidzhennja_krovi_tvaryn.pdf
Cobb. Cobb500 Broiler: Performance & Nutrition. Supplement (2022). Colchester: Cobb, 2022. https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/5502e86566/2022-Cobb500-Broiler-Performance-Nutrition-Supplement.pdf
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The importance of animal models in biomedical research: current insights and applications. Animals 2023; 13(7): 1223. doi:10.3390/ani13071223
Dridi S, Maynard CW, Wen J, Gilbert ER. Editorial: fat metabolism and deposition in poultry: physiology, genetics, nutrition and interdisciplinary research, volume I. Front Physiol 2022; 13: 937081. doi:10.3389/fphys.2022.937081
DSTU 4120 – 2002. Compound feed for farm poultry. Specifications. Introduced 2002-30-09. Kyiv: Derzhspozhivstandard of Ukraine 2002: 12.
Fu Y, Zhang J, Wang Y, et al. Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing. Carbohydr Polym 2021; 257: 117598–608. doi:10.1016/j.carbpol.2020.117598
Hadadi N, Hafner J, Shajkofci A, Zisaki A, Hatzimanikatis V. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth Biol 2016; 5(10): 1155–66. doi:10.1021/acssynbio.6b00054
Klochkov VK, Grigorova AV, Sedyh OO, Malyukin YuV. Characteristics of nLnVO4 : Eu3+(Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J Appl Spectrosc 2012; 79(5): 726-30. doi:10.1007/s10812-012-9662-7
Klochkov VK, Malyshenko AI, Sedykh OO, Malyukin YuV. Wet chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4 : Eu3+(Re = La, Gd, Y) with rodlike and spindlelike shape. Funct Materials 2011; 18(1):111–15. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/135437/18-Klochkov.pdf?sequence=1
Laboratory methods of research in biology, animal husbandry and veterinary medicine: a handbook. Lviv : SPOLOM, 2012: 764. ISBN 976-966-665-677-6 [in Ukrainian] ??
Lys O. Content of diene koh’ugatives and malonic dialdehyde in blood for rats in dynamics of formation of immobilizational stress. Technology Transfer: Innovative Solutions in Medicine 2018; 18–20. doi:10.21303/2585-663.2018.00751
Makola MD, Motsei LE, Ajayi TO, Yusuf AO. Dietary nano-dicalcium phosphate improves immune response and intestinal morphology of broiler chickens. S Afr J Anim Sci 2021; 51(3): 362–370. doi: 10.4314/sajas.v51i3.10
Maliukina MYu, Piliai LV, Siedykh OO, Klochkov VK, Kavok NS. Aggregation stability of nanoparticles based on rare earth elements in various microenvironments and biological environments. Biofizychnyi visnyk 2018; (40): 5-16. doi:10.26565/2075-3810-2018-40-01
Malyukin YuV. New luminescent nanomaterials: fundamental properties, biomedical and technical applications. Visn Nac Acad Nauk Ukr 2017; 12: 28-34. doi:10.15407/visn2017.12.028
Masliuk A, Lozhkina O, Orobchenko O, Klochkov V, Yefimova S, Kavok N. Pathomorphological changes in the duodenum of rats in case of subchronic peroral administration of gadolinium orthovanada-te nanoparticles against the background of food stress. Slov Vet Res 2023; 60(2): 75–93. doi:10.26873/SVR-1672-2023
Masliuk AV, Orobchenko OL, Romanko MY, et al. The state of metabolic parameters of the blood in white rats under conditions of long-term oral administration of lantanum orthovanadate nanoparticles under food stress. Bull Sumy Nat Agrar Uni. The Series: Veterinary Medicine, 2023; 1(60): 63–73. doi:10.32782/bsnau.vet.2023.1.11
Masliuk АV, Orobchenko OL, Romanko MYe, Koreneva YuM, Klochkov VK, Yefimova SL, Kavok NS. The state of metabolic parameters of the blood in white rats under conditions of long-term oral administration of gadolinium orthovanadate nanoparticles under food stress. Sci Messin LNU Vet Med Biotech 2023; 25(109): 67–78. doi:10.32718/nvlvet10911
Melnik A. Some propagates of protein-lipid exchange and functional state of liver in broilers for the use of «animal health». Sci J Vet Med 2017; 2: 69–78.
Methodical recommendations «Methods of peroxide oxidation of lipid and that regulation in biological processes». Kharkiv: NSC «IEKVM» , 2009: 64. [in Ukrainian] ??
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Yefimova SL, Nikitchenko IV, Bozhkov AI. Age-related effects of orthovanadate nanoparticles involve activation of gsh-dependent antioxidant system in liver mitochondria. Biol Trace Elem Res 2021; 199: 649–59. doi:10.1007/s12011-020-02196-7
Nikolova V, Kircheva N, Dobrev S, Angelova S, Dudev T. Lanthanides as Calcium Mimetic Species in Calcium-Signaling/Buffering Proteins: The Effect of Lanthanide Type on the Ca2+/Ln3+ Competition. Int J Mol Sci 2023; 24(7): 6297. doi: 10.3390/ijms24076297
Omran B, Baek KH. Nanoantioxidants: pioneer types, advantages, limitations, and future insights. Molecules 2021; 26(22): 7031. doi:10.3390/molecules26227031
Orobchenko OL, Roman'ko MY, Paliy AP, et al. Evaluation of Ag, Cu, Fe and MnO2 nanoparticle mixture effecton histomorphological state of internal organs and tissues in laying hens. Ukr J Ecol 2020; 10(4): 165–74. doi:10.15421/2020_184
Pan L, Zhang X, Fan X, Li H, Xu B, Li X. Whey protein isolate coated liposomes as novel carrier systems for astaxanthin. Eur J Lipid Sci Technol 2020; 122: 1900325–35. doi:10.1002/ejlt.201900325
Qaid MM, Al-Garadi MA. Protein and amino acid metabolism in poultry during and after heat stress: a review. Animals 2021; 11(4): 1167. doi: 10.3390/ani11041167
Romanko M, Orobchenko O, Paliy A, Ushkalov V, Palii A, Chechui H. Evaluation of biochemical markers in the blood plasma of rats exposed to chronic administration of a mixture of metal nanoparticles. Vet Stanica 2023; 54(1): 69–85. doi:10.46419/vs.54.1.10
Sahiner N, Sagbas S, Aktas N. Preparation and characterization of monodisperse, mesoporous natural poly (tannic acid)-silica nanoparticle composites with antioxidant properties. Microporous Mesoporous Mater 2016; 226: 316–24. doi:10.1016/j.micromeso.2016.02.012
Sandra F, Khaliq NU, Sunna A, Care A. Developing protein-based nanoparticles as versatile delivery systems for cancer therapy and imaging. Nanomaterials 2019; 9: 1329. doi:10.3390/nano9091329
Sarnatskaya V, Shlapa Y, Yushko L, et al. Biological activity of cerium dioxide nanoparticles. J Biomed Mater Res A 2020; 108(8): 1703–12. doi:10.1002/jbm.a.36936
Savytskyi ІV, Mukhin OM, Tsypoviaz SV, Merza YM, Zashchuk RG, Znamerovsky SG, Badiuk NS. Oxidative stress and lipid peroxidation in experimental peritonitis. PharmacologyOnLine 2021; 1: 125–129. https://pharmacologyonline.silae.it/files/archives/2021/vol1/PhOL_2021_1_A017_Savytskyi.pdf
Selle PH, Cantor DI, McQuade LR, et al. Implications of excreta uric acid concentrations in broilers offered reduced-crude protein diets and dietary glycine requirements for uric acid synthesis. Anim Nutr 2021; 7(4): 939–46. doi: 10.1016/j.aninu.2021.03.011
Şenay S, Islim P, Tugay A. Supplementation of natural antioxidants to reduced crude protein diets for japanese quails exposed to heat stress. Braz J Poult Sci 2019; 21(1): 1–14. doi: 10.1590/1806-9061-2017-0694
Settle T, Carro MD, Falkenstein E, Radke W, Klandorf H. The effects of allopurinol, uric acid, and inosine administration on xanthine oxidoreductase activity and uric acid concentrations in broilers. Poult Sci 2012; 91(11): 2895–903. doi: 10.3382/ps.2012-02321
Shevchuk MO, Stoyanovskyy VG, Kolomiіets IA. Technological stress in poultry. Sci Messin LNU Vet Med Biotech 2018; 20(88): 63–8. doi:10.32718/nvlvet8811
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides-based biomaterials for drug delivery and tissue engineering applications. Carbohydr Polym Technol Appl 2021; 2: 100067–91. doi:10.1016/j.carpta.2021.100067
Tomchuk VA, Hryshchenko VA, Tsvilihovskyi VI. Veterinary biochemistry: a study guide for the preparation of students of higher educational institutions. Kyiv: CPU «Comprint», 2017: 568. https://dglib.nubip.edu.ua/server/api/core/bitstreams/d48311b6-40a3-4b7a-8672-c70b3b30b667/content
Tsahar E, Arad Z, Izhaki I, Guglielmo CG. The relationship between uric acid and its oxidative product allantoin: a potential indicator for the evaluation of oxidative stress in birds. J Comp Physiol B 2006; 176(7): 653–61. doi: 10.1007/s00360-006-0088-5
Tsap M, Kovalchuk I, Koleshchuk E, Tesarivska U, Kushnir I. Influence of watering I, SE, S citrate on growth and development of chickenbroilers. Sci Horiz 2020; 23(10): 25–32. doi:10.48077/scihor.23(10).2020.25–32
Tsekhmistrenko O, Bityutskyy V, Tsekhmistrenko S, Demchenko O, Spivak M. Effect of cerium dioxide nanoparticles on metabolic processes in the body of broiler chickens. Tehnologìâ virobnictva ì pererobki produktìv tvarinnictva 2022; 2: 6–12. doi:10.33245/2310-9289-2022-175-2-6-12
Tsekhmistrenko OS, Bityutskyy VS, Tsekhmistrenko SI, Spivak MY. Influence of cerium dioxide nanoparticles on biochemical indicators in the organism of broiler chicken. Veterinary Science, Technologies of Animal Husbandry and Nature Management 2020; 6: 112–17. doi: 10.31890/vttp.2020.06.20
Tsekhmistrenko SI, Ponomarenko NV. The composition of lipids and lipid peroxidation in the pancreas of quails under nitrate actions and correction by the amaranth’s seeds. Ukr Biochem J 2013; 85(2): 84–92.
Tsekhmistrenko О, Bityutskyy V, Tsekhmistrenko S, Melnychenko O, Tymoshok N, Spivak M. Use of nanoparticles of metals and non-metals in poultry farming. Animal Husbandry Products Production and Processing 2019; 2: 113–30. doi:10.33245/2310-9289-2019-150-2-113-130
Zhao H, Wu M, Tang X, Li Q, et al. Function of Chick Subcutaneous Adipose Tissue During the Embryonic and Posthatch Period. Front Physiol 2021; 12: 684426. doi:10.3389/fphys.2021.684426
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alla Masliuk, Oleksandr Orobchenko, Valerii Ushkalov, Maryna Romanko, Volodymyr Klochkov, Nataliya Kavok, Roman Sachuk, Olena Kurbatska

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.