PATHOMORPHOLOGICAL CHANGES IN THE DUODENUM OF RATS IN CASE OF SUBCHRONIC PERORAL ADMINISTRATION OF GADOLINIUM ORTHOVANADATE NANOPARTICLES AGAINST THE BACKGROUND OF FOOD STRESS

Authors

  • Alla Masliuk Laboratory for toxicological monitoring, National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Pushkinska St., 83, 61023, Kharkiv, Ukraine https://orcid.org/0000-0002-4161-8080
  • Olena Lozhkina Research pathomorphology department, State Scientific Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Donetska St., 30, 03151, Kyiv, Ukraine https://orcid.org/0000-0002-1480-497X
  • Oleksandr Orobchenko * Laboratory for toxicological monitoring, National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Pushkinska St., 83, 61023, Kharkiv, Ukraine, toxy-lab@ukr.net https://orcid.org/0000-0002-0885-7776
  • Volodymyr Klochkov Nanostructured materials department, Institute for Scintillation Materials National Academy of Sciences of Ukraine, Nauky Аve., 60, 61072, Kharkiv, Ukraine https://orcid.org/0000-0002-8080-1195
  • Svitlana Yefimova Nanostructured materials department, Institute for Scintillation Materials National Academy of Sciences of Ukraine, Nauky Аve., 60, 61072, Kharkiv, Ukraine https://orcid.org/0000-0003-2092-1950
  • Nataliya Kavok Nanostructured materials department, Institute for Scintillation Materials National Academy of Sciences of Ukraine, Nauky Аve., 60, 61072, Kharkiv, Ukraine https://orcid.org/0000-0002-2429-2832

DOI:

https://doi.org/10.26873/SVR-1672-2023

Keywords:

rare earth metals, gadolinium orthovanadate nanoparticles, pathomorphological changes, duodenum, white rats, feed stress

Abstract

In our research, we were interested in the actual presence of adaptive or negative reactions in the wall of the small intestine of white rats under the influence of gadolinium orthovanadate nanoparticles in the range of doses (≈0.03-0.3 mg/kg of body weight) under conditions of food stress (due to an excess of fiber and lack of protein in the diet) and their degree of manifestation, since this type of ration disproportion occurs quite often in Ukraine. Nanoparticles of gadolinium orthovanadate have a significant potential for use in animal husbandry and poultry farming, as in the range of doses of 0.03-0.15 mg/kg of body weight, they prevent negative effects on the intestinal mucosa, even in conditions of feed stress. It has been established that administration of gadolinium orthovanadate nanoparticles in doses of 0.03 and 0.15 mg/kg of body weight to white rats with drinking water for 56 and 28 days, respectively, leads to activation of the mechanical and immunological barrier of the mucous membrane, as indicated by an increase goblet cells, hyperplasia of enterocytes of some crypts, thickening of villi and infiltration by lymphocytes of the own plate, which reach the control level 14 days after stopping their administration. However, increasing the dose of gadolinium orthovanadate nanoparticles to 0.3 mg/kg of body weight in conditions of food stress leads to the depletion of the adaptive capabilities of the intestinal mucosa and excessive activation of the immunological barrier, which were manifested by dystrophic changes from the 14th day of administration, which deepened to the 56th day and do not level off after 14 days after stopping administration.

PATOMORFOLOŠKE SPREMEMBE V DVANAJSTNIKU PODGAN OB SUBKRONIČNEM PERORALNEM DAJANJU NANODELCEV GADOLINIJEVEGA ORTOVANADATA OB PREHRANSKEM STRESU

Izvleček: V naši raziskavi nas je zanimala dejanska prisotnost prilagoditvenih ali negativnih reakcij v steni tankega črevesa belih podgan pod vplivom nanodelcev gadolinijevega ortovanadata v razponu odmerkov (≈ 0,03–0,3 mg/kg telesne teže) v pogojih prehranskega stresa (zaradi presežka vlaknin in pomanjkanja beljakovin v prehrani) in njihova stopnja izražanja, saj se tovrstna nesorazmernost obrokov v Ukrajini pogosto pojavlja. Nanodelci gadolinijevega ortovanadata imajo pomemben potencial za uporabo v živinoreji in perutninarstvu, saj v območju odmerkov 0,03–0,15 mg/kg telesne teže preprečujejo negativne učinke na črevesno sluznico tudi pri stresu zaradi krme. Ugotovljeno je bilo, da dajanje nanodelcev gadolinijevega ortovanadata v odmerkih 0,03 in 0,15 mg/kg telesne teže belim podganam s pitno vodo 56 oziroma 28 dni povzroči aktivacijo mehanske in imunološke pregrade sluznice, kar se kaže v povečanju števila čašastih celic, hiperplaziji enterocitov nekaterih kript, zadebelitvi resic in infiltraciji limfocitov, ki 14 dni po prenehanju dajanja dosežejo kontrolno raven. Vendar pa povečanje odmerka nanodelcev gadolinijevega ortovanadata na 0,3 mg/kg telesne teže pri prehranskem stresu povzroči izčrpavanje prilagoditvenih sposobnosti črevesne sluznice in pretirano aktivacijo imunološke pregrade, kar se je od 14. dneva dajanja pokazalo z distrofičnimi spremembami, ki so se poglobile do 56. dne in se po 14 dneh po prenehanju dajanja niso izravnale.

Ključne besede: redke zemeljske kovine; nanodelci gadolinijevega ortovanadata; patomorfološke spremembe; dvanajstnik; bele podgane; krmni stres

References

● 1. Goodenough KM, Schilling J, Jonsson E, et al. Europe’s rare earth element resource potential: an overview of REE metallogenetic pro-vinces and their geodynamic setting. Ore Geol Rev 2016; 72: 838–56. doi:10.1016/j.oregeorev.2015.09.0

● 2. Balaram V. Rare earth ele-ments: a review of applications, oc-currence, exploration, analysis, recycling, and environmental im-pact. Geosci Front 2019; 10(4): 1285–303.

● 3. Cheisson T, Schelter EJ. Rare earth elements: Mendeleev's bane, modern marvels. Science 2019; 363(6426): 489–93.

● 4. Runowski M, Ekner-Grzyb A, Mrówczyńska L, et al. Synthesis and organic surface modification of lumi-nescent, lanthanide-doped Core/Shell nanomaterials (LnF3@100SiO2@NH2@organic acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation. Langmuir 2014; 30(31): 9533–43.

● 5. Jaiswal VV, Bishnoi S, Swati G, et al. Luminescence properties of yttrium gadolinium orthovanadate nanophosphors and efficient energy transfer from VO4 3− to Sm 3+ via Gd 3+ ions. Arab J Chem 2017; 13(1): 474–80.

● 6. Toro-González M, Dame AN, Mirzadeh S, Rojas JV. Gadolinium vanadate nanocrystals as carriers of α-emitters (225Ac, 227Th) and con-trast agents. J Appl Phys 2019; 125(21): e214901. doi:10.1063/1.5096880

● 7. Maksimchuk PO, Hubenko KO, Seminko VV, et al. High antioxi-dant activity of gadoliniumyttrium orthovanadate nanoparticles in cell-free and biological milieu. Nano-technology 2021; 33(5): e055701. doi:10.1088/1361-6528/ac3

● 8. Maksimchuk PO, Yefimova SL, Omielaieva VV, et al. X-ray indu-ced hydroxyl radical generation by GdYVO4:Eu3+ nanoparticles in aqueous solution: main mechanisms. Crystals 2020; 10(5): e370. doi:10.3390/cryst1005037

● 9. Karpenko NA, Malukin YuV, Koreneva EM, et al. The effects of chronic intake of nanoparticles of ce-rium dioxide or gadolinium ortovana-date into aging male rats. Proc Int Conf NanoMat: Appl Prop 2013; 2(1): e01001 https://nap.sumdu.edu.ua/index.php/nap/nap2013/paper/view/1289/488

● 10. Koreneva EM, Karpenko NA, Smolenko NP, et al. The influen-ce of gadolinium ortovanadate and cerium dioxide nanoparticles on spermogram of adult male rats with neonatal induced disorders of repro-ductive function. Probl Endocr Pathol 2016; 55(1): 48–55.

● 11. Belkina IO. Gonadotoxicity of gadolinium ortovanadate nanopar-ticles under their chronic exposure. Probl Endocr Pathol 2017; 61(3): 78–85.

● 12. Belkina IO, Smolenko NP, Klochkov VK, et al. The assessment of gadolinium orthovanadate nano-particles value for neonatally-induced reproductive disease in male rats. Int J Physiol Pathophysiol 2017; 8(4): 299–307.

● 13. Chistyakova EYe, Smolenko NP, Belkina IO, Korenyeva YeM, Karpenko NO. Effect of the different doses of nanoparticles gadolinium or-tovanadat on the reproductive func-tion of male rats. Bull Probl Biol Med 2017: 3,2(138): 127–30. https://vpbm.com.ua/ua/kopiya-vyipusk-3-tom-2-(138),/9025

● 14. Bölükbaş SC, Al-Sagan AA, Ürüşan H, Erhan MK, Durmuş O, Kurt N. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymesin serum and li-pid oxidation in egg yolk. J Anim Physiol Anim Nutr (Berl) 2016; 100: 686–93.

● 15. Reka D, Thavasiappan V, Selvaraj P, Arivuchelvan A. Effect of dietary REE supplementation on blo-od biochemical parameters in layer chicken. Int J Curr Microbiol Appl Sci 2018; 7(1): 181–5.

● 16. Tommasi F, Thomas PJ, Pa-gano G, et al. Review of rare earth elements as fertilizers and feed additi-ves: a knowledge gap analysis. Arch Environ Contam Toxicol 2021; 81(4): 531–40.

● 17. Rossander L, Sandberg AS, Sandström B. The influence of dietary fibre on mineral absorption and utili-sation. In: Schweizer TF, Edwards CA, eds. Dietary fibre - a component of food. London: Springer, 1992: 197–216.

● 18. Hennigar SR, Kelley AM, McClung JP. Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review. Adv Nutr 2016; 7(4): 735–46.

● 19. Goff JP. Invited review: mi-neral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considera-tions to improve mineral status. J Da-iry Sci 2018; 101(4): 2763–813.

● 20. Blaxter KL. Nutrition and climatic stress in farm animals. Proc Nutr Soc 1958; 17(2): 191–97.

● 21. Poroshyns'ka OA, Shmajun SS, Nishhemenko MP, Stovbec'ka LS, Jemel'janenko AA, Kozij VI. Influence of stress factors on adaptive and be-havioral responses in sows and piglets. Sci J Vet Med 2020; 2: 110–21.

● 22. Shevchuk MO, Stoya-novskyy VG, Kolomiіets IA. Techno-logical stress in poultry. Scientific Messenger of LNU of Veterinary Me-dicine and Biotechnologies. Series: Veterinary sciences 2018; 20(88): 63–8.

● 23. Tkachenko A, Pogozhykh D, Onishchenko A, et al. Gadolinium orthovanadate GdVO4:Eu3+ nano-particles ameliorate carrageenan-Induced intestinal inflammation. J Pharm Nutr Sci 2021; 11: 40–8.

● 24. Fan MZ, Adeola O, Asem EK, King D. Postnatal ontogeny of kinetics of porcine jejunal brush bor-der membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities. Comp Biochem Physiol Part A Mol Integr Physiol 2002; 132(3): 599–607.

● 25. Dahiya JP, Hoehler D, Van Kessel AG, Drew MD. Effect of diffe-rent dietary methionine sources on intestinal microbial populations in broiler chickens. Poult Sci 2007; 86(11): 2358–66.

● 26. Sachuk R, Stravsky YA. Zhyhalyuk S, Katsaraba O, Mandyhra Yu. Quality and safety of feeds for cows in the dry period and the parturition in the obstetrics dis-pensation system. Sci Horiz 2019; 12(85): 39–47.

● 27. Melnyk AYu, Sakara VS, Vovkotrub NV, Kharchenko AV, Bilyk BP. Metabolic disorders in po-ultry (review). Scientific Messenger of LNU of Veterinary Medicine and Bio-technologies. Series: Veterinary scien-ces 2021; 23(103): 125–35.

● 28. Klochkov VK, Grigorova AV, Sedyh OO, Malyukin YuV. Cha-racteristics of nLnVO4 : Eu3+(Ln = La, Gd, Y, Sm) sols with nanopartic-les of different shapes and sizes. J Appl Spectrosc 2012; 79(5): 726–30. doi:10.1007/s10812-012-9662-7

● 29. Klochkov VK, Malyshenko AI, Sedykh OO, Malyukin YuV. Wet chemical synthesis and characterizati-on of luminescent colloidal nanopar-ticles: ReVO4 : Eu3+(Re = La, Gd, Y) with rodlike and spindlelike shape. Funct Mater 2011; 18(1):111–5.

● 30. Malyukin YuV. New lumine-scent nanomaterials: fundamental properties, biomedical and technical applications. Visn Nac Acad Nauk Ukr 2017; 12: 28–34. doi:10.15407/visn2017.12.028

● 31. Diet. Meat Free Rat and Mouse Diet (SF00-100) 2015: https://www.specialtyfeeds.com/new/wp-con-tent/uploads/2022/06/meat_free_rm.pdf

● 32. Kotsyumbas IYa. Preclinical studies of veterinary medicinal pro-ducts: scientific edition. Lviv: Triada Plus, 2006: 360. [in Ukrainian] ne najdem podatkov!!

● 33. Hao W, Cha R, Wang M, Zhang P, Jiang X. Impact of nanoma-terials on the intestinal mucosal barri-er and its application in treating inte-stinal diseases. Nanoscale Horiz 2022; 7: 6–30. doi:10.1039/d1nh00315a

● 34. Montagne L, Pluske J, Ham-pson D. A review of interactions between dietary fibre and the intesti-nal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol 2003; 108(1/4): 95–117. doi:10.1016/s0377-8401(03)00163-9

● 35. Maswanganye GMT, Liu B, Che D, Han R. Review: effects of die-tary fiber levels and composition on the intestinal health of finishing pigs. Open J Anim Sci 2021; 11: 384–98. doi:10.4236/ojas.2021.113028

● 36. Sekh N, Karki D. Dietary fiber in poultry nutrition in the light of past, present, and future research perspective: a review. Open J Anim Sci 2022; 12: 662–87. doi:10.4236/ojas.2022.124046

● 37. Grondin JA, Kwon YH, Far PM, Haq S, Khan WI. Mucins in inte-stinal mucosal defense and inflamma-tion: learning from clinical and expe-rimental studies. Front Immunol 2020; 11: 2054. doi:10.3389/fimmu.2020.02054

● 38. Anugwa FOI, Varel VH, Dic-kson JS, Pond WG, Krook LP. Effects of dietary fiber and protein concentra-tion on growth, feed efficiency, visce-ral organ weights and large intestine microbial populations of swine. J Nu-tr 1989; 119(6): 879–86. doi:10.1093/jn/119.6.879

● 39. Sugano M, Ikeda I, Imaizumi K, Lu Y-F. Dietary fiber and lipid ab-sorption.

In: Kritchevsky D, Bonifield C, eds. Dietary fiber: Boston: Springer, 1990: 137–56. doi:10.1007/978-1-4613-0519-4_9

● 40. McCracken BA, Gaskins HR, Ruwe-Kaiser PJ, Klasing KC, Jewell DE. Diet-dependant and diet-independant metabolic responses un-derlie growth stasis of pigs at wea-ning. J Nutr 1995; 125(11): 2838–45. doi:10.1093/jn/125.11.2838

● 41. McRorie JW, McKeown NM. Understanding the physics of functio-nal fibers in the gastrointestinal tract: an evidence-based approach to resol-ving enduring misconceptions about insoluble and soluble fiber. J Acad Nutr Diet 2017; 117(2): 251–64.

● 42. Huo S, Jin S, Ma X, et al. Ul-trasmall gold nanoparticles as carriers for nucleus-based Gene therapy due to size-dependent nuclear entry. ACS Nano 2014; 8(6): 5852–62. doi:10.1021/nn5008572

● 43. Pan Y, Neuss S, Leifert A, et al. Size-dependent cytotoxicity of gold nanoparticles. Small 2007; 3(11): 1941–9. doi:10.1002/smll.200700378

● 44. Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015; 9(9): 8655–71. doi:10.1021/acsnano.5b03184

● 45. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanopar-ticle toxicity on their physical and chemical properties. Nanoscale Res Lett 2018; 13(1): e 44 doi:10.1186/s11671-018-2457-x

● 46. Bhattacharya D, Santra CR, Ghosh AN, Karmakar P. Differential toxicity of rod and spherical zinc oxide nanoparticles on human pe-ripheral blood mononuclear cells. J Biomed Nanotechnol 2014; 10(4): 707–16. doi:10.1166/jbn.2014.1744

● 47. Misra SK, Nuseibeh S, Dybowska A, Berhanu D, Tetley TD, Valsami-Jones E. Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology 2013; 8(4): 422–32. doi:10.3109/17435390.2013.796017

● 48. Bandas IA, Krynytska I Yа, Kulitska MI, Korda MM. Nanopartic-les: importance today, classification, use in medicine, toxicity. Med Clin Chem 2015; 17(3): 123–9. doi:10.11603/mcch.2410-681X.2015.v17.i3.5066

Downloads

Published

2023-02-06

How to Cite

Masliuk, A., Lozhkina, O., Orobchenko, O., Klochkov, V., Yefimova, S., & Kavok, N. (2023). PATHOMORPHOLOGICAL CHANGES IN THE DUODENUM OF RATS IN CASE OF SUBCHRONIC PERORAL ADMINISTRATION OF GADOLINIUM ORTHOVANADATE NANOPARTICLES AGAINST THE BACKGROUND OF FOOD STRESS. Slovenian Veterinary Research, 60(2), 75–93. https://doi.org/10.26873/SVR-1672-2023

Issue

Section

Original Research Article