GENOTYPING AND GENETIC EVOLUTION ANALYSIS OF NEWLY ISOLATED NEWCASTLE DISEASE VIRUS IN EGYPT

Authors

  • Yahia Madbouly 1 PhD student Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Alzeraa Street, Post code 44511, Zagazig City, Sharkia Province, Egypt 2 Assistant researcher at Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt.
  • Mohammed Shakal 3 Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
  • Eman Aly Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt
  • Ashraf Hussein 1 Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Alzeraa Street, Post code 44511, Zagazig City, Sharkia Province, Egypt
  • Mohammed Abdelsabour Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt
  • Amal Eid Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Alzeraa Street, Post code 44511, Zagazig City, Sharkia Province, Egypt

DOI:

https://doi.org/10.26873/SVR-1437-2021

Keywords:

poultry, Newcastle Disease, fusion protein, genotype VII, velogenic, 3D protein structure

Abstract

In spite of enormous vaccination programs that were implemented in the Egyptian poultry farms, Newcastle Disease Virus (NDV) remains one of the major concerns to the poultry industry. Therefore, molecular analysis for the circulating NDV strains is crucial to monitor their genetic evolution. Twenty-three tracheal samples were collected from vaccinated broiler, layer and breeder flocks suffered from respiratory, nervous symptoms and drop in egg production between October 2019 and December 2020. Only ten samples (10/23; 43.5%) showed HA activity after propagation into ECE while only six samples were positive for Avian avulavirus 1 based on real time RT-PCR. Nucleotide sequences for both F and HN genes showed high similarity to recently reported Egyptian NDV isolates. Sequencing for the F protein cleavage site showed the typical sequence of velogenic NDV strains (112R-R/K-Q-K-R↓F117). Deduced amino acid analyses for the cleavage site, fusion peptide, glycosylation sites, heptad repeat region and transmembrane domain of F protein were conducted along with the transmembrane domain of HN protein that showed different substitutions in comparison with the commonly used vaccine strains. Phylogenetic analyses for the reported isolates in this study based on the full-length F gene revealed their clustering within sub-genotype VII.1.1. 3D protein structural modelling suggested that amino acids substitutions within the fusion peptide sequences result in conformational changes in the F protein structure. In conclusion, NDV continues to evolve and further in vivo studies are strongly recommended to define the precise efficacy of applied NDV vaccines against the circulating strains in Egypt.

References

● 1. USDA. Livestock and poultry: world markets and trade. Washington: United States Department of Agriculture, Foreign Agricultural Service Office of Global Analysis, 2019. https://www. fas.usda.gov/ data/livestock-and-poultry-world-markets-andtrade.

● 2. Eurostat. Poultry meat pro-duction in EU at new high in 2018. Products Eurostat News, 2018. https://ec.europa.eu/eurostat/web/products-eurstatnews/-/DDN-20190325-1

● 3. U. S. Poultry and egg associa-tion. Economic data 2019. Tucker, Georgia, 2019. http://www. poutryegg. org/economic data/

● 4. Saad AM, Samy A, Soliman MA, Arafa A, Zanaty A, Has-san MK, and Hussein AH (2017). Genotypic and patho-genic characterization of geno-type VII Newcastle disease vi-ruses isolated from commer-cial farms in Egypt and evalua-tion of heterologous antibody responses. Archives of Virolo-gy, 162(7): 1985–1994. DOI: https://doi.org /10.1007/s00705-017-3336-y.

● 5. Westbury HA (2001). New-castle disease virus: an evolv-ing pathogen. Avian Pathology, 30:

● 6. World Health Organization. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Chapter 2.3.14). (2012). Available online at:https://www.oie.int /doc/ged/d12009.pdf (acessed March 8, 2014).

● 7. Shahid M, Muhammad Q, Al-Ghanim KA, Al-Misned F, and Al-Mulhim N (2020). Isolation, identification and molecular charac-terization of Newcastle disease vi-rus using SDS-PAGE. Journal of King Saud University -Science, 32(1): 1000-1003. doi: https://doi.org/10.1016/ j.jksus.2019.09.005.

● 8. Mase M, Imai K, Sanada Y, Sanada N, Yuasa N, Imada T, Tsukamoto K, and Yamaguchi S (2002). Phylogenetic analysis of Newcastle disease virus genotypes isolated in Japan. Journal of Clinical Microbiolo-gy, 40: 3826– 3830. doi: https://doi.org/10.1128/jcm.40.10 .3826-3830 .2002.

● 9. Marks FS, Rodenbusch CR, Okino CH, Hein HE, Costa EF, Machado G, Canal CW, Brentano L, and Corbellini LG (2014). Targeted survey of Newcastle disease virus in backyard poultry flocks locat-ed in wintering site for migra-tory birds from Southern Bra-zil. Preventive Veterinary Medicine, 116: 197-202. DOI: https://doi.org/10.1016/j.prevetmed.2014.06.001.

● 10. Kang Y, Li Y, Yuan R, Li X, Sun M, Wang Z, Feng M, Jiao P, and Ren T (2014). Phyloge-netic relationships and patho-genicity variation of two New-castle disease viruses isolated from domestic ducks in Southern China. Virology Journal, 11: 147- 159. DOI: https://doi.org/10.1186/1743-422X-11-147.

● 11. Diel DG, Susta L, Cardenas Garcia S, Killian ML, Brown CC, Miller PJ, and Afonso CL (2012). Complete genome and clinicopathological characteri-zation of a virulent Newcastle disease virus isolate from South America. Journal of Clinical Microbiology, 50:378–387. doi: https://doi.org/10.1128/JCM.06018-11.

● 12. Jaganathan S, Ooi PT, Phang LY, Allaudin ZN, Yip LS, Choo PY, Lim BK, Lemiere S, and Audonnet JC (2015). Ob-servation of risk factors, clini-cal manifestations and genetic characterization of recent Newcastle disease virus out-break in West Malaysia. BMC Veterinary Research, 11: 219-227. doi: https://doi.org /10.1186/s12917-015-0537-z.

● 13. Daubeny R. and Mansy W (1947). The occurrence of Newcastle disease in Egypt. Journal of Comparative Pa-thology and Therapeutics, 58: 189-200. DOI: https://doi.org/10.1016/S0368-1742(48)80019-6.

● 14. Hussein HA, Emara MM, Samy AM, and Shalaby MA (2000). Anti-genic diversity of Newcastle disease virus isolated from 52 breeder and broiler flocks in Egypt.The Egyp-tian .J .of Imm .Vet, 2: 3-15. Availa-ble at Egyptian Journal of Veteri-nary Sciences http://www.members.tripod.com/ejimmunolo-gy/previous/jun00/jun00-1.html.

● 15. Mohamed MHA, Kumar S, Paldurai A, and Samal SK (2011). Sequence analysis of fusion protein gene of New-castle disease virus isolated from outbreaks in Egypt dur-ing 2006. Virology Journal, 8: 237-240. doi: https://doi.org/10.1186/1743-422X-8-237.

● 16. Selim KM, Selim A, Arafa A, Hussein HA, and Elsanousi AA (2018). Molecular characterization of full fusion protein (F) of New-castle disease virus genotype VIId isolated from Egypt during 2012-2016. Veterinary World, 11(7) 930–938. doi: https://doi.org/10.14202 /vetworld.2018. 930-938.

● 17. Abd El Aziz M, Abd El-Hamid H, Ellkany H, Nasef S, Nasr S, and El Bestawy A (2016). Biological and molecu-lar characterization of New-castle disease virus circulating in chicken flocks, Egypt, dur-ing 2014-2015. Zagazig Veteri-nary Journal, 44(1): 9–20. DOI: https://dx.doi.org/10. 21608/zvjz.2016.7827.

● 18. Ewies SS, Ali A, Tamam SM, and Madbouly HM (2017). Molecular characterization of Newcastle dis-ease virus (genotype VII) from broiler chickens in Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 6 (3): 232-237. DOI: https://doi. org/10.1016/j.bjbas.2017 .04.004.

● 19. Hassan KE, Shany S, Ali A, Dahshan A, El-Sawah AA, El-kadyM. Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poult Sci. (2016) 95:1271–80. doi: 10.3382/ps/pew068.

● 20. Mansour SM, Mohamed FF, Eid AA, Mor SK, Goyal SM. Co-circulation of paramyxo-and influenza viruses in pi-geons in Egypt. Avian Pathol. (2017) 46:367–75. doi: 10.1080/03079457.2017.1285391.

● 21. Abd El-Hamid HS, Shafi ME, Albaqami NM, Ellakany HF, Abdelaziz NM, Abdelaziz MN, et al. Sequence analysis and pathogenicity of Avian Orthoavulavirus 1 strains iso-lated from poultry flocks dur-ing 2015–2019. BMC Vet Res. (2020) 16:1–15. doi: 10.1186/s12917-020- 02470-9

● 22. Shakal M, Maher M, Metwal-ly AS, AbdelSabour MA, Madbbouly YM, Safwat G (2020). Molecular Identifica-tion of a velogenic Newcastle Disease Virus Strain Isolated from Egypt. J. World Poult. Res., 10 (2S): 195-202. DOI: https:// dx.doi.org/10.36380 /jwpr.2020.25

● 23. Alexander DJ. Newcastle disease in the European Union 2000 to 2009. Avian Pathol. (2011) 40:547–58. doi: 10.1080/03079457.2011.618823

● 24. International Committee on Taxonomy of Viruses (ICTV). Virus Taxonomy. (2018). Available online at: https://talk.ictvonline.org/taxonomy (accessed December 20, 2020).

● 25. Aldous EW, Mynn JK, Banks J, and Alexander DJ (2003). A molecular epidemio-logical study of avian para-myxovirus type 1 (Newcastle disease virus) isolates by phy-logenetic analysis of a partial nucleotide sequence of the fu-sion protein gene. Avian Pa-thology, 32: 239–256. doi: https://doi.org/10.1080/0307945031 00009783.

● 26. Ashraf A, Shah MSU, Habib M, Hussain M, Mahboob S, and Al-Ghanim K (2016). Iso-lation, identification and mo-lecular characterization of highly pathogenic Newcastle disease virus from field out-breaks. Brazilian Archives of Biology and Technology, 59: e16160301. DOI: https:// doi.org/10.1590/1678-4324-2016160301.

● 27. de Leeuw OS, Koch G, Har-tog L, Ravenshorst N, Peeters BPH. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin–neuraminidase protein. J Gen Virol. (2005) 86:1759–69.doi: 10.1099/vir.0.80822-0

● 28. Czeglédi A, Ujvári D, So-mogyi E, Wehmann E, Wer-ner O, Lomniczi B.Third ge-nome size category of avian paramyxovirus serotype 1 (Newcastledisease virus) and evolutionary implications. Vi-rus Res. (2006) 120:36–48.doi: 10.1016/j.virusres.2005.11.009

● 29. Peeters BP, de Leeuw OS, Koch G, and Gielkens AL (1999). Rescue of Newcastle disease virus from cloned cDNA: evidence that cleava-bility of the fusion protein is a major determinant for viru-lence. Journal of Virology, 73:5001–5009. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11 2544/.

● 30. Russell, P.H., Alexander, D.J., 1983. Antigenic variation of Newcastle disease virus strains detected by monoclo-nal antibodies. Arch. Virol. 75, 243–253. https://doi.org/10.1007/BF01314 890.

● 31. Ballagi-Pordany, A., Wehmann, E., Herczeg, J., Belak, S., Lomniczi, B., 1996. Identification and grouping of Newcastle disease virus strains by restriction site analysis of a region from the F gene. Arch. Virol. 141, 243–261. https:// doi.org/10.1007/BF01718397.

● 32. Dimitrov KM, Abolnik C, Afonso CL, Albina E, Bahl J, Berg M, Briand FX, Brown IH, Choi KS, Chvala I, Diel DG, Durr PA, Ferreira HL, Fusaro A, Gil P, Goujgoulova GV, Grund C, Hicks JT, Jo-annis TM, Torchetti MK, Ko-losov S, Lambrecht B, Lewis NS, Liu H, Liu H, McCullough S, Miller PJ, Monne I, Muller CP, Munir M, Reischak D, Sabra M, Samal SK, Servan de Almeida R, Shittu I, Snoeck CJ, Suarez DL, Van Borm S, Wang Z, Wong FYK. Updated unified phylogenetic classification sys-tem and revised nomenclature for Newcastle disease virus. Infect Genet Evol. 2019 Oct; 74:103917. doi: 10.1016/j.meegid.2019 .103917. Epub 2019 Jun 11. PMID: 31200111; PMCID: PMC6876278.

● 33. Toyoda, T., Sakaguchi, T., Hirota, H., Gotoh, B., Kuma, K., Miyata, T., Nagai, Y., 1989. Newcastle disease virus evolu-tion II. Lack of gene recombi-nation in generating virulent and avirulent viruses. Virology 169, 273–283. https://doi.org/ 10.1016/0042-6822(89)90152-9.

● 34. Herczeg, J., Wehmann, E., Bragg, R.R., Dias, P.M.T., Hadjiev, G., Werner, O., Lomniczi,B., 1999. Two novel genetic groups (VIIb and VIII) responsible for recent New-castle disease outbreaks in southern Africa, one (VIIb) of which reached southern Eu-rope. Arch. Virol. 144, 2087–2099. https://doi.org/10.1007 /s007050050624.

● 35. Miller, P.J., Decanini, E.L., Afonso, C.L., 2010. Newcastle disease: evolution of geno-types and the related diagnos-tic challenges. Infect. Genet. Evol. 10, 26–35. https://doi.org/10. 1016/j.meegid.2009.09.012.

● 36. Cattoli, G., Fusaro, A., Monne, I., Molia, S., Le Men-ach, A., Maregeya, B., Nchare, A., Bangana, I., Maina, A.G., Koffi, J.N., Thiam, H., Bezeid, O.E., Salviato, A., Nisi, R., Terregino, C., Capua, I., 2010. Emergence of a new genetic lineage of Newcastle disease virus in west and Central Afri-ca–implications for diagnosis and control. Vet. Microbiol. 142, 168–176. https://doi.org/10.1016 /j.vetmic.2009.09.063.

● 37. Diel, D.G., da Silva, L.H., Liu, H., Wang, Z., Miller, P.J., Afonso, C.L., 2012. Genetic diversity of avian paramyxovi-rus type 1: proposal for a uni-fied nomenclature and classifi-cation system of Newcastle disease virus genotypes. In-fect. Genet. Evol. 12, 1770–1779. https://doi.org/10.1016/j. meegid.2012.07.012.

● 38. Courtney, S.C., Susta, L., Gomez, D., Hines, N.L., Pedersen, J.C., Brown, C.C., Miller, P.J., Afonso, C.L., 2013. Highly divergent virulent iso-lates of Newcastle disease vi-rus from the Dominican Re-public are members of a new genotype that may have evolved unnoticed for over 2 decades. J. Clin. Microbiol. 51, 508–517. https://doi. org/10.1128/JCM.02393-12.

● 39. Wang JY, Liu WH, Ren JJ, Tang P, Wu N, Wu HY, and Liu H J (2015). Characteriza-tion of emerging Newcastle disease virus isolates in China. Virology Journal, 12(1): 119. DOI: https://doi.org/10.1186 /s12985-015-0351-z.

● 40. Mansour SMG, ElBakrey RM, Mohamed FF, Hamouda EE, Abdallah MS, Elbestawy AR, Ismail MM, Abdien HMF and Eid AAM (2021) Avian Paramyxovirus Type 1 in Egypt: Epidemiology, Evolu-tionary Perspective, and Vac-cine Approach. Front. Vet. Sci. 8:647462. doi: 10.3389/fvets.2021.647462.

● 41. Dimitrov KM, Ramey AM, Qiu X, Bahl J, and Afonso CL (2016). Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infection, Ge-netics and Evolution, 39: 22–34. DOI: https://doi.org/10.1016 /j.meegid.2016.01.008.

● 42. Kattenbelt JA, Meers J, and Gould AR (2006). Genome sequence of the thermostable Newcastle disease virus (strain I-2) reveals a possible pheno-typic locus. Veterinary Micro-biology, 114: 134-141. DOI: https://doi.org/10.1016/j. vetmic.2005.10.041.

● 43. OIE Manual (2018). Newcas-tle Disease, Chapter 2.3.14. OIE, Paris. Available at: https:// www.oie.int/fileadmin/Home/eng/Health_stan dards/tahm/3.03.14_NEWCASTLE_DIS.pdf.

● 44. Wise GM, David LS, Bruce SS, Janice CP, Dennis AS, Daniel JK, Darrell R K, and Erica S (2004). Development of a Real-Time reverse-transcription PCR for detec-tion of Newcastle disease vi-rus RNA in clinical samples. Journal of Clinical Microbiolo-gy, 42 (1) 329-338. doi: https://doi.org/10.1128/JCM.42.1.329-338.2004.

● 45. Munir, M., Abbas, M., Khan, M.T. et al. Genomic and bio-logical characterization of a ve-logenic Newcastle disease vi-rus isolated from a healthy backyard poultry flock in 2010. Virol J 9, 46 (2012). https://doi.org/10.1186/1743-422 X-9-46.

● 46. Hall TA (1999). BioEdit: a user-friendly biological se-quence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41:95-98. Available at: https:// www.scienceopen.com/document?vid=690e7265 -f2ce-4d9c-82a2-399cca46fbef.

● 47. Tamura K, Stecher G, Peter-son D, Filipski A, Kumar S. MEGA6: Molecular Evolu-tionary Genetics Analysis ver-sion 6.0. Mol Biol Evol. 2013;30(12):2725-2729. doi:10.1093/molbev/mst 197.

● 48. Munir M, Cortey M, Abbas M, Qureshi ZU, Afzal F, Shabbir MZ, Khan MT, Ah-med S, Ahmad S, Baule C, Ståhl K, Zohari S, Berg M (2012) Biological characteriza-tion and phylogenetic analysis of a novel genetic group of Newcastle disease virus isolat-ed from outbreaks in com-mercial poultry and from backyard poultry flocks in Pa-kistan. Infect Genet Evol 12:1010–1019. https ://doi.org/10.1016/j.meegi d.2012.02.015.

● 49. Abd Elfatah, K.S.; Elabasy, M.A.; El-khyate, F.; Elmahal-lawy, E.K.; Mosad, S.M.; El-Gohary, F.A.; Abdo, W.; Al-Brakati, A.; Seadawy, M.G.; Tahoon, A.E.; et al. Molecular Characterization of Velogenic Newcastle Disease Virus (Sub-Genotype VII.1.1) from Wild Birds, with Assessment of Its Pathogenicity in Suscep-tible Chickens. Animals 2021, 11, 505. https://doi.org/10.33 90/ani11020505

● 50. Damena D, Fusaro A, Som-bo M, Belaineh R, Heidari A, Kebede A, Kidane, M, and Chaka H (2016). Characteriza-tion of Newcastle disease vi-rus isolates obtained from outbreak cases in commercial chickens and wild pigeons in Ethiopia. Springer Plus, 5: 476-453. DOI: https://doi.org/ 10.1186/s40064-016-2114-8.

● 51. Ganar, K., Das, M., Sinha, S., Kumar, S (2014). Newcastle disease virus: current status and our under-standing. Virus Research, 184: 71–81. doi: https://doi.org /10.1016/j.virusres.2014.02. 016.

● 52. Collins MS, Bashiruddin JB, and Alexander DJ (1993). De-duced amino acid sequences at the fusion protein cleavage site of Newcastle disease vi-ruses showing variation in an-tigenicity and pathogenicity. Archives of Virology, 128: 363-370. DOI: https://doi.org /10.1007/BF01309446.

● 53. Kolakofsky D, Roux L, Garcin D, Ruigrok RW (2005) Paramyxovirus mRNA editing, the ‘rule of six’ and error ca-tastrophe: a hypothesis. J Gen Virol 86(7): 1869–1877. https://doi.org/10.1099/vir.0.80986-0

● 54. El Naggar RF, Rohaim MA, Bazid AH, Ahmed KA, Hus-sein HA, Munir M. Biological characterization of wild-bird-origin avian avulavirus 1 and efficacy of currently applied vaccines against potential in-fection in commercial poultry. Arch Virol. 2018 Oct;163(10): 2743-2755. doi: 10.1007/ s00705-018-391 6-5. Epub 2018 Jun 19. PMID: 29922856.

● 55. Alexander DJ, Senne DA (2008) Newcastle disease, oth-er avian paramyxoviruses, and pneumovirus infections. In: Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE (eds) Diseas-es of poultry, 12th edn. Iowa State University Press, Ames, pp 75–116

● 56. Yusoff K, Nesbit M, McCartney H, Meulemans G, Alexander DJ, Collins MS, et al. Location of neutralizing epitopes on the fusion protein of Newcastle disease virus strain Beaudette C. J Gen Vi-rol. (1989) 70:3105–9. doi: 10.1099/ 0022-1317-70-11-3105.

● 57. Liu XF, Wan HQ, Ni XX, Wu YT, Liu WB. Pathotypical and genotypical characteriza-tion of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001. Arch Virol. (2003) 148:1387–403. doi: 10.1007/s00705-003-0014-z.

● 58. Ismail NM, El-Deeb AH, Emara MM, Tawfik HI, Wanis NA, Hus-sein HA. Prime-boost vaccination strategy against avian influenza and Newcastle disease viruses reduces shedding of the challenge viruses. Virus Dis. (2018) 29:324–32. doi: 10.1007/s13337-018-0463-3.

● 59. Römer-Oberdörfer A, Veits J, Werner O, Mettenleiter TC (2006) Enhancement of patho-genicity of Newcastle disease virus by alteration of specific amino acid residues in the sur-face glycoproteins F and HN. Avian Dis 50(2):259–263. https://doi.org/10.1637/74 71-11150 5r.1

● 60. Cho SH, Kim SJ, Kwon HJ. Genomic sequence

of an antigenic variant New-castle disease virus isolated in Korea. Virus Genes. (2007) 35:293–302. doi: 10 .1007/s11262-007-0078-z.

● 61. Hu S,Wang T, Liu Y,Meng C,Wang X,Wu Y, et al. Identi-fication of a variable epitope on the Newcastle disease virus hemagglutinin–neuraminidase protein. Vet Microbiol. (2010) 140:92–7. doi:10.1016/j.vetmic .2009.07.029.

● 62. Sergel TA, McGinnes LW, Morrison TG. A single amino acid change in the Newcastle disease virus fusion protein al-ters the requirement for HN protein in fusion. J Virol. (2000) 74:5101–7. doi:10.1128/JVI .74.11.5101-5107.2000.

● 63. Sergel TA, McGinnes LW, Mor-rison TG. Mutations in the fusion peptide and adjacent heptad repeat inhibit folding or activity of the Newcastle disease virus fusion pro-tein. J Virol. (2001) 75:7934–43. doi:10.1128/JVI .75.17.7934-7943.2001

Downloads

Additional Files

Published

2021-12-17

How to Cite

Madbouly, Y., Shakal, M., Aly, E., Hussein, A., Abdelsabour, M., & Eid, A. (2021). GENOTYPING AND GENETIC EVOLUTION ANALYSIS OF NEWLY ISOLATED NEWCASTLE DISEASE VIRUS IN EGYPT. Slovenian Veterinary Research, 58(24-Suppl), 165–76. https://doi.org/10.26873/SVR-1437-2021

Issue

Section

Original Research Article