DIVERSITY OF ARTHRODERMATACEAE COMMUNITIES THAT CREATE HAVOC TO THE OVERALL HEALTH OF HUMAN AND ANIMALS

Authors

  • Mohamed Taha Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Egypt
  • Yasmine H. Tartor * Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Egypt; jasmen21@yahoo.com, yasminehtartor@zu.edu.eg
  • Safaa A. Abdallah Environmental affairs apparatus, Cabinet of Ministers, Sharkia Governorate, Egypt
  • Mona M. Osman Directorate of Veterinary Medicine, Sharkia Governorate, Egypt
  • Ahmed M. Ammar Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Egypt

DOI:

https://doi.org/10.26873/SVR-632-2018

Abstract

Keratinous substance rich soil is most conducive for keratinophilic fungi growth and occurrence. Dermatophytes and other related fungi are potential pathogens causing human and animal dermatomycoses. Herein, this study went for screening the presence of dermatophytes and related keratinophilic fungi in various soil samples collected from different locations of Sharkia Governorate, Egypt. A total of 80 soil samples from roadsides, fields and stables were subjected for mycological analysis using modified hair-bait technique with hair of horse, cattle and goat, sheep wool, and chicken feathers as a keratin source for keratinophilic fungi growth. Keratinophilic fungi were identified according to their phenotypical characterization in combination with PCR amplification and sequencing for internal transcribed spacer (ITS) region of rDNA. Keratinophilic fungi were recovered from 73.75% of soil samples (59/80). Field soils yielded a higher positivity rate for keratinophilic fungal isolates (90%) than roadsides (66.67%) and stables (58.82%). The majority of keratinophilic fungi belonged to dermatophytes (57.47%). Microsporum gypseum (50.85%) were detected in the majority of sites followed by Trichophyton mentagrophytes (30.51%), Chrysosporium species (28.81%), C. keratinophilium (23.73%), C. tropicum, C. zonatum, Arthroderma multifidum, Arthroderma benhami, Arthroderma fulvum, Clonostachys species, Simplicillium obclavatum and Purpureocillium lilacinum (1.69%, each). It was found that horse and goat hair were more suitable for isolation of keratinophilic fungi with a percentage of 100% for each, followed by cattle hair (91.66%), sheep wool (87.5%) and chicken feathers (83.33%). This investigation demonstrated that the various soils of Sharkia Governorate might be critical suppliers of certain keratinophilic fungi that may constitute hazards to human and animal health. The genetic-based identification is strongly recommended for a high discriminatory identification of keratinophilic fungi.

Key words: keratinophilic fungi; geophilic dermatophytes; Arthroderma benhami; Arthroderma fulvum; ITS sequencing

References

(1) Bohacz J, Korniłłowicz-Kowalska T. Species diversity of keratinophilic fungi in various soil types. Cent Eur J Biol 2012; 7: 266–95. doi: 10.2478/s11535-012-0008-5.

(2) Anane S, Al-Yasiri MHY, Normand AC, Ranque S. Distribution of Keratinophilic fungi in soil across Tunisia: A descriptive study and review of the literature. Mycopathologia 2015; 180: 61–8. doi: 10.1007/s11046-015-9870-9.

(3) Kaul S, Kour H, Pandita D, Smit K, Dhar MK. Polymerase Chain Reaction: Restriction Fragment Length Polymorphism differentiates the environmental and clinically important fungal isolates. Natl Acad Sci Lett 2013; 36: 139–46. doi: 10.1007/s40009-013-0121-7.

(4) Cai W, Lu C, Li X, Zhang J, Zhan P, Xi L, et al. Epidemiology of superficial fungal infections in Guangdong, Southern China: A retrospective study from 2004 to 2014. Mycopathologia 2016; 181: 387–95. doi: 10.1007/s11046-016-9986-6.

(5) Tartor YH, El Damaty HM, Mahmmod YS. Diagnostic performance of molecular and conventional methods for identification of dermatophyte species from clinically infected Arabian horses in Egypt. Vet Dermatol 2016; 27. doi: 10.1111/vde.12372.

(6) Cafarchia C, Iatta R, Latrofa MS, Gräser Y, Otranto D. Molecular epidemiology, phylogeny and evolution of dermatophytes. Infect Genet Evol 2013; 20: 336–51. doi: 10.1016/j.meegid.2013.09.005.

(7) Tainwala R, Sharma Y. Pathogenesis of dermatophytoses. Indian J Dermatol 2011; 56: 259–61. doi: 10.4103/0019-5154.82476.

(8) Maghraby TA, Gherbawy YA, Hussein MA. Keratinophilic fungi inhabiting floor dusts of student houses at the South Valley University in Egypt. Aerobiologia (Bologna) 2008; 24: 99–106. doi: 10.1007/s10453-008-9089-z.

(9) Kachuei R, Emami M, Naeimi B, Diba K. Isolation of keratinophilic fungi from soil in Isfahan province, Iran Isolement de champignons ké ratinophiles du sol dans la province d’Isfahan, Iran MOTS CLÉS. J Mycol Med 2012; 22: 8–13. doi: 10.1016/j.mycmed.2011.11.002.

(10) Deshmukh SK, Verekar SA CY. Incidence of Keratinophilic Fungi from the Selected Soils of Kaziranga National Park, Assam ( India ). Mycopathologia 2017; 182: 371–7. doi: 10.1007/s11046-016-0083-7.

(11) Orr GF. Keratinophilic fungi isolated from soils by a modified hair bait technique. Med Mycol 1969;7: 129–34.

doi: 10.1080/00362177085190231.

(12) Mohamed Taha. Medical Mycology : Atlas of medically important fungi and dermatomycosis. first ed. Mecca printing house; 2011.

(13) White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds), PCR Pro- Tocols a Guid to Methods Appl Acad Press New York, 1990: 315e322.

(14) Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30: 2725–9. doi: 10.1093/molbev/mst197.

(15) Kachuei R, Emami M, Naeimi B, Diba K. Isolation of keratinophilic fungi from soil in Isfahan province, Iran. J Mycol Med 2012; 22: 8–13. doi: 10.1016/j.mycmed.2011.11.002.

(16) Jain N, Sharma M. Distribution of dermatophytes and other related fungi in Jaipur city, with particular reference to soil pH. Mycoses 2011; 54: 52–8. doi: 10.1111/j.1439-0507.2009.01751.x.

(17) Deshmukh SK, Verekar SA. Prevalence of keratinophilic fungi in public park soils of Mumbai, India. Microbiol Res 2012; 3.

doi: 10.4081/mr.2012.e6.

(18) Zaki SM, Mikami Y, Karam El-Din AA, Youssef YA. Keratinophilic fungi recovered from muddy soil in Cairo vicinities, Egypt. Mycopathologia 2005; 160: 245–51. doi: 10.1007/s11046-005-0143-x.

(19) Deshmukh SK, Mandeel QA, Verekar SA. Keratinophilic fungi from selected soils of Bahrain. Mycopathologia 2008; 165: 143–7.

doi: 10.1007/s11046-007-9067-y.

(20) Anane S. Epidemiological investigation of keratinophilic fungi from soils of Djerba (Tunisia). J Mycol Med 2012; 22: 225–9.

doi: 10.1016/j.mycmed.2012.05.003.

(21) Javoreková S, Labuda R, Maková J, Novák J, Medo J, MajerÄíková K. Keratinophilic fungi isolated from soils of long-term fold-grazed, degraded pastures in National Parks of Slovakia. Mycopathologia 2012; 174: 239–45. doi: 10.1007/s11046-012-9543-x.

(22) Taha M, Hassan M, Essa S, Tartor Y. Use of Fourier transform infrared spectroscopy (FTIR) spectroscopy for rapid and accurate identification of yeasts isolated from human and animals. Int J Vet Sci Med 2013; 1: 15–20. doi: 10.1016/j.ijvsm.2013.03.001.

(23) El Damaty HM, Tartor YH, Mahmmod YS. Species identification, strain differentiation, and antifungal susceptibility of dermatophyte species isolated from clinically infected Arabian horses. J Equine Vet Sci 2017; 59: 26–33. doi: 10.1016/j.jevs.2017.08.019.

(24) Tartor Y, Taha M, Mahboub H, El Ghamery M. Yeast species associated with diseased fish: Occurrence, identification, experimental challenges and antifungal susceptibility testing. Aquaculture 2018; 488: 134–44. doi: 10.1016/j.aquaculture.2018.01.033.

(25) Tartor YH, Hassan FAM. Assessment of carvacrol for control of avian aspergillosis in intratracheally challenged chickens in comparison to voriconazole with a reference on economic impact. J Appl Microbiol 2017. doi: 10.1111/jam.13557.

(26) Fukutomi T, Kano R, Kamata H. First Isolation of Arthroderma fulvum in Japan. Med Mycol J 2017; 58: E115–8. doi: 10.3314/mmj.17-00004.

(27) Nenoff P, Uhrlaß S, Krüger C, Seyfarth F, Herrmann J, Wetzig T, Schroedl W, Gräser Y. Trichophyton species of Arthroderma benhamiae – a new infectious agent in dermatology. J Dtsch Dermatol Ges. 2014: 571–81. doi: 10.1111/ddg.12390.

(28) Yamaguchi S, Sano A, Hiruma M, Murata M, Kaneshima T, Murata Y, et al. Isolation of dermatophytes and related species from domestic fowl (Gallus gallus domesticus). Mycopathologia 2014; 178: 135–43. doi: 10.1007/s11046-014-9758-0.

(29) Singh I, Dixit AK, Kushwaha RKS. Antagonism of Microsporum species by soil fungi. Mycoses 2010; 53: 32–9. doi: 10.1111/j.1439-0507.2008.01656.x.

(30) Deshmukh SK. Incidence of dermatophytes and other keratinophilic fungi in the glacier bank soils of the Kashmir valley, India. Mycologist 2002; 16. doi: 10.1017/S0269915X0200407X.

(31) Deshmukh SK, Verekar SA. Isolation of keratinophilic fungi from selected soils of Sanjay Gandhi National Park, Mumbai (India). J Mycol Med 2014; 24: 319–27. doi: 10.1016/j.mycmed.2014.08.004.

(32) Shekhar H, Gogia V, Vashisht N, Gupta S, Kakkar A, Venkatesh P. Endogenous endopht-halmitis by Chrysosporium : An opportunistic path-ogen. Ocul Immunol Inflamm 2014; 22: 158–60. doi: 10.3109/09273948.2013.779726.

(33) Abarca ML, Martorell J, Castellá G, Ramis A, Cabañes FJ. Cutaneous hyalohyphomycosis caused by a Chrysosporium species related to Nannizziopsis vriesii in two green iguanas ( Iguana iguana ). Med Mycol 2008; 46: 349–54. doi: 10.1080/13693780701851711.

(34) Siddiqui AS, Zimmerman JL. Pulmonary infection secondary to Chrysosporium zonatum in an immunocompetent man. Ann Am Thorac Soc 2016; 13: 757–8. doi: 10.1513/AnnalsATS.201601-083LE.

(35) Cook E, Meler E, Garrett K, Long H, Mak K, Stephens C, et al. Disseminated Chrysosporium infection in a German shepherd dog. Med Mycol Case Rep 2015; 10: 29–33. doi: 10.1016/j.mmcr.2016.01.002.

(36) Anstead GM, Sutton DA, Graybill JR. Adiaspiromycosis causing respiratory failure and a review of human infections due to Emmonsia and Chrysosporium spp. J Clin Microbiol 2012; 50: 1346–54. doi: 10.1128/JCM.00226-11.

(37) Abreu LM, Moreira GM, Ferreira D, Rodrigues-Filho E, Pfenning LH. Diversity of Clonostachys species assessed by molecular phylo-genetics and MALDI-TOF mass spectrometry. Fungal Biol 2014; 118: 1004–12. doi: 10.1016/j.funbio.2014.10.001.

(38) Nonaka K, Kaifuchi S, Ōmura S, Masuma R. Five new Simplicillium species (Cordyci-pitaceae) from soils in Tokyo, Japan. Mycoscience 2013; 54: 42–53. doi: 10.1016/J.MYC.2012.07.002.

(39) Luangsa-Ard J, Houbraken J, van Doorn T, Hong SB, Borman AM, Hywel-Jones NL, Samson RA. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett 2011; 321: 141–9. doi: 10.1111/j.1574-6968.2011.02322.x.

(40) Shivaprasad A, Ravi GC, Shivapriya, Rama. A rare case of nasal septal perforation due to Purpureocillium lilacinum: case report and review. Indian J Otolaryngol Head Neck Surg 2013; 65: 184–8. doi: 10.1007/s12070-012-0570-1.

(41) Teerthanath S, Bhandary SK. A rare case of fungal maxillary sinusitis due to Paecilomyces lilacinus in an immunocompetent host, presenting as a subcutaneous swelling. J Lab Physicians 2011; 3: 46–8. doi: 10.4103/0974-2727.78566.

(42) Suh CK. Studies on baiting methods for isolation of Keratinophilic fungi. Korean J Dermatol. 1966; 5: 23–50.

Downloads

Published

2018-11-06

Issue

Section

Original research Article