CHEMICAL COMPOSITION OF TUALANG HONEY AND ITS EFFECT ON THE LUNG SURFACTANTS AND HISTOLOGY OF MALE RATS EXPOSED TO CIGARETTE SMOKE

Chinedum Eleazu, Aminah Che Romli, Wan Faiziah Wan Abdul Rahman, Zaida Zakaria, Zaidatul Akmal Othman, Mahaneem Mohamed

Abstract


This study reported the chemical composition of Tualang honey and its effect on the lung surfactants and histology of male rats exposed to cigarette smoke. Thirty-two adult male Sprague-Dawley rats were used and they were randomly divided into 4 groups of eight rats each: control, honey-treated (Honey), cigarette smoke-exposed (CS) and honey-treated plus CS (Honey+CS). Rats in control and CS groups received distilled water (0.5 mL/day) while rats in Honey and Honey+CS groups received honey (1.2 g/kg body weight/day) by oral gavage. Furthermore, rats in CS and Honey+CS groups were exposed to CS in a chamber for 8 minutes (3 times/day). Exposure of rats to cigarette smoke significantly altered their phosphatidyl choline/ phosphatidyl glycerol (PC/PG) ratio but not their surfactant protein A levels with increased number of alveolar macrophage containing carbon particles. Administration of Tualang honey to CS exposed rats resulted in modulation of most of these parameters and which results were coroborrated by histology. The colour intenstity, pH and moisture content of the honey were obtained as 272.75 mili-absorbance unit, 3.43 and 17.38%, respectively. Screening for phenolic compounds in Tualang honey using High Performance Thin Layer Chromatography showed the presence of 18 compounds while only five were identified which possessed strong in vitro antioxidant capacity as seen from their 2,2,diphenyl-1-picryl hydrazyl radical scavenging ability. The study showed the promising potentials of Tualung honey in protecting lung surfactants from the deleterious action of cigarette smoke which may be associated with its antioxidant phenolic compounds.

Key words: tualang honey; surfactant; inhalation toxicology; phenolic compounds

 

KEMIČNA SESTAVA MEDU TUALANG IN NJEGOV VPLIV NA POVRŠINSKO AKTIVNE SNOVI V PLJUČIH TER HISTOLOGIJO PLJUČ SAMCEV PODGAN, IZPOSTAVLJENIH CIGARETNEM DIMU

Povzetek: Raziskava poroča o kemijski sestavi medu Tualang in njegovem vplivu na površinsko aktivne snovi v pljučih ter histologijo pljuč samcev podgan, izpostavljenih cigaretnemu dimu. V študiji so uporabili 32 odraslih podgajih samcev seva Sprague-Dawley, ki so bili naključno razdeljeni v 4 skupine po osem podgan: kontrolna skupina, skupina, ki je uživala med s prehrano (Honey), skupina, ki je bila izpostavljena cigaretnemu dimu (CS) in skupina, ki je bila izpostavljena cigaretnemu dimu ter je uživala med (Honey+CS). Podgane v kontrolnih skupinah in skupinah CS so dobile destilirano vodo (0,5 ml/dan), podgane v skupinah Honey in Honey + CS pa peroralno med (1,2 g/kg telesne teže/dan). Poleg tega so bile podgane v skupinah CS in Honey + CS izpostavljene v komori cigaretnemu dimu trikrat na dan po 8 minut. Izpostavljenost podgan cigaretnemu dimu je bistveno spremenila razmerje fosfatidilholina/fosfatidilglicerola (PC/PG), ne pa tudi ravni površinsko aktivne snovi A v pljučih in ni vplivala na število alveolarnih makrofagov, ki vsebujejo ogljikove delce. Uporaba medu Tualang pri podganah, izpostavljenih cigaretnemu dimu, je povzročila spremembo večine opazovanih parametrov, katerih rezultati so bili potrjeni s histološko preiskavo. Intenzivnost barve medu je bila 272,75 enote mili-absorbance, pH 3,43, vsebnost vlage v medu pa je bila 17,38 %. Presejalni test na fenolne spojin v medu Tualang s tankoplastno kromatografijo je pokazal prisotnost 18 spojin, od katerih jih je bilo 5 prepoznanih kot spojine z močno in vitro antioksidativno sposobnostjo, kot je razvidno iz njihove sposobnosti odstranjevanja radikala 2,2-difenil-1-pikril hidrazila. Študija je pokazala obetavne potenciale medu Tualung pri zaščiti pljučnih površinsko aktivnih snovi pred škodljivim delovanjem cigaretnega dima, kar je lahko povezano z njegovimi antioksidativnimi fenolnimi spojinami.

Kjučne besede: med tualang; surfaktant; inhalacijska toksikologija; fenoli


Full Text:

PDF

References


(1.) Avery ME. Surfactant deficiency in hyaline membrane disease: the story of discovery. Am J Resp Crit Care Med 2000; 161: 1074–5.

(2.) Nkadi PO, Merritt TA, Pillers DM. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the ole of surfactant in health and disease. Mol Genet Metab 2009; 97(2): 95–101.

(3.) Miller BE, Hook GER. Hypertrophy and hyperplasia alveolar type II cells in response to silica and other pulmonary toxicants. Environ Health Perspect 1990; 85: 15–23.

(4.) Jobe AH, Ikegami M. Surfactant for acute respiratory distress syndrome. Adv Intern Med 1997; 42: 203–30.

(5.) Chi C, He B, Zhang H, Tang X. Therapeutic effects of pulmonary surfactant on smoking-induced lung injury in rats, an experimental study. Zhonghua Yi Xue Za Zhi 2002; 82: 1060–2.

(6.) Scott JE. The pulmonary surfactant: impact of tobacco smoke and related compounds on surfactant and lung development. Tob Induc Dis 2004; 2(1): 3–25. doi: 10.1186/1617-9625-2-1-3

(7.) Dunn A, Zeine L. Health effects of exposure to environmental tobacco smoke. California Environmental Protection Agency. Tob Control 1997; 6: 346–53.

(8.) Janson C. The effect of passive smoking on respiratory health in children and adults. Int J Tuberc Lung Dis 2004; 8: 510–6.

(9.) Jha P. Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer 2009; 9: 655–64.

(10.) Mathieu CM, Maxime L, Jean-Christophe B, et al. Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study. Plos One 2014; 9: e92498 doi: 10.1371/journal.pone.0092498

(11.) Subramaniam S, Bummer P, Gairola CG. Biochemical and biophysical characterization of pulmonary surfactant in rats exposed chronically to cigarette smoke. Fundam Appl Toxicol 1995; 27: 63–9.

(12.) Schmekel B, Khan AR, Linden M, Wollmer P. Recoveries of phosphatidylcholine and alveolar macrophages in lung lavage from healthy light smokers. Clin Physiol 1991; 11: 431–8.

(13.) Putman E, van Golde LMG, Haagsman HP. Toxic oxidant species and their impact on the pulmonary surfactant system. Lung 1997; 175: 75–103.

(14.) Karla LM, Daniele CC, Maria ACD, et al. Respiratory immunohistochemical study in rats exposed to cigarette smoke and alcohol. Acta Cir Bras 2015; 30: 178–85.

(15.) Turkmen N, Sari F, Poyarazoglu ES, Velioglu YS. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem 2005; 95: 653–7.

(16.) Samarghandian S, Tahereh F, Fariborz S. Honey and health: a review of recent clinical research. Pharmacogn Res 2017; 9: 121–7.

(17.) Estevinho L, Pereira AP, Moreira L, Dias LG, Pereira E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 2008; 46: 3774–9.

(18.) Erejuwa OO, Sulaiman SA, Ab Wahab MS. Honey: a novel antidiabetic agent. Int J Biol Sci 2012; 8: 913–34.

(19.) Khalil I, Moniruzzaman M, Boukraâ L, et al. Physicochemical and antioxidant properties of Algerian honey. Molecules 2012; 17: 11199–215.

(20.) Attia WY, Gabry MS, El-Shaikh KA, Othman GA. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells. Egypt J Immunol 2008; 15: 169–83.

(21.) Ahmed S, Othman NH. Honey as a potential natural anticancer agent: a review of its mechanisms. Evid Based Complement Alternat Med 2013; 2013: e829070. doi: 10.1155/2013/829070

(22.) Mohamed M, Sulaiman SA, Jaafar H, Sirajudeen KNS. Antioxidant protective effect of honey in cigarette smoke-induced testicular damage in rats. Int J Mol Sci 2011; 12: 5508–21.

(23.) Pasupuleti VR, Kumara TK, Naguib S, Siew HG. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Rev Bras Farmacogn 2016; 26: 657–64.

(24.) Dunn WL. Handbook of histopathological and histochemical techniques. 3rd ed. Redwood : Bun, Trowbridge, Esher, 1974: 10–15.

(25.) Parveen K, Uma B, Shrirang J. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats. BioMed Res Int 2014; 2014: e606021(1–11). doi: 10.1155/2014/606021

(26.) Berretta G, Granata P, Ferrero M, Orioli M, Facino RM. Standardization of antioxidant properties of honey by combination of spectrophotometric/fluorometric assays and chemometrics. Anal Chim Acta 2005; 533: 185–91.

(27.) Bogdanov S. Characterization of antibacterial substances in honey. Lebensm Wiss Technol 1984; 17: 74–6.

(28.) Tuberoso CIG, Bifulco E, Jerković I, Caboni P, Cabras P, Floris I. Methyl syringate: a chemical marker of asphodel (Asphodelus microcarpus Salzm. et Viv.) monofloral honey. J Agric Food Chem 2009; 57: 3895–900.

(29.) Van Den Berg AJ, Van den Worm E, Van Ufford HC, et al. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J Wound Care 2008; 17: 172–4.

(30.) Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activiity. Food Chem 2005; 91: 571–7.

(31.) Reich E, Schibli A, Debatt A. Validation of high-performance thin-layer chromatographic methods for the identification of botanicals in a cGMP environment. J AOAC Int 2008; 91: 13–20.

(32.) Eleazu CO, Iroaganachi MA, Eleazu KC, Okoronkwo JO. Determination of the physico-chemical composition, microbial quality and free radical scavenging activities of some commercially sold honey samples in Aba, Nigeria: ‘The effect of varying colours. Int J Biomed Res 2013; 4: 32–41.

(33.) Abselami A, Tahani A, Sindic M, Fauconnier ML, Bruneau E, Elbachiri A. physicochemical properties of some honeys produced from different flora of Eastern Morocco. J Mater Environ Sci 2018; 9: 879–86.

(34.) Sohaimy SAE, Masry SHD, Shehata MG. Physicochemical characteristics of honey from different origins. Ann Agric Sci 2015; 60: 279–87.

(35.) Ahma A, Seif EAM, Mohammad JA, Nuru, A. Comparison of physicochemical properties and effects of heating regimes on stored Apis mellifera and Apis florea honey. Saudi J Biol Sci 2017; 26: 845–8.

(36.) Codex Alimentarius. Codex standard for honey. Rome : FAO, 2001: Alinorm: 19–26.

(37.) Gheldof N, Wang XH, Engeseth NJ. Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 2002; 50: 5870–7.

(38.) Vasudevan DM, Sreekumari S, Vaidyanathan, K. Textbook of biochemistry for medical students. 7th ed. New Delhi, India : Jaypee Brothers Medical Publishers Pvt. 2013.

(39.) Bao MJ, Shen J, Jia YL, et al. Apple polyphenol protects against cigarette smoke-induced acute lung injury. Nutrition 2013; 29: 235–43.




DOI: https://doi.org/10.26873/SVR-974-2020

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si