Sahar Hassan Orabi, Sherif Mohamed Shawky


The current study focused on investigating the renoprotective effects of grape seed oil (GSO) against hexavalent chromium (Cr (VI))-induced nephrotoxicity. A total of 40 male rats were randomly divided into four groups: group I served as the control group, group II received 1000 mg/L potassium dichromate (353.5 mg/L Cr(VI)) in drinking water for 12 weeks, group III received 3.7 g/kg body weight/day GSO orally for 12 weeks, and group IV received GSO together with potassium dichromate for 12 weeks. Cr(VI) significantly increased serum levels of urea, creatinine, potassium and glucose. In addition, Cr(VI) increased MDA levels and induced renal tissue damage and DNA damage. On the other hand, Cr(VI) decreased serum levels of sodium and antioxidant defence system [reduced glutathione (GSH) and catalase (CAT)]. However, treatment with GSO prevented elevation levels of serum urea, creatinine, potassium and glucose. In addition, GSO enhanced sodium level, renal tissue antioxidant defense system due to its curative effect ameliorated particularly oxidative stress, renal tissue and DNA damage. In conclusion, these results demonstrate that GSO is a promising nephroprotective agent against Cr(VI)-induced nephrotoxicity.

Key words: grape seed oil; hexavalent chromium; nephrotoxicity; DNA damage



Povzetek: Študija je bila osredotočena na proučevanje zaščitnih učinkov olja grozdnih pešk (GSO) pri toksični obremenitvi ledvic, povzročeni s heksavalentnim kromom (Cr (VI)). Štirideset samcev podgan je bilo naključno razdeljenih v štiri skupine: skupina I - kontrolna skupina, skupina II, ki je v pitni vodi 12 tednov prejemala 1000 mg/L kalijevega dikromata (353,5 mg/L Cr (VI)), skupina III, ki je peroralno 12 tednov prejemala 3,7 g/kg telesne mase/dan GSO ter skupina IV, ki je 12 tednov prejemala GSO skupaj s kalijevim dikromatom. Cr(VI) je znatno zvišal serumske ravni sečnine, kreatinina, kalija in glukoze v serumu. Poleg tega je Cr(VI) zvišal raven MDA in povzročil poškodbe ledvičnega tkiva in poškodbe DNK. Po drugi strani je Cr(VI) znižal serumsko raven natrija in antioksidativnega obrambnega sistema, zmanjšal raven glutationske peroksidaze in katalaze. Dodajanje GSO poskusnim živalim je preprečilo zvišanje ravni sečnine v serumu, kreatinina, kalija, natrija in glukoze. Poleg tega je GSO izboljšal obrambni sistem antioksidantov ledvičnega tkiva. Zaradi svojega zdravilnega učinka je izboljšal zlasti oksidativni stres, poškodbe ledvičnega tkiva in DNK. Rezultati kažejo, da je GSO obetavno zaščitno sredstvo za ledvica pri toksični obremenitvi, povzročeni s Cr(VI).

Ključne besede: olje grozdnih pešk; heksavalentni krom; nefrotoksičnost; poškodba DNK

Full Text:



(1.) Vislocky LM, Fernandez M L. Biomedical effects of grape products. Nutr Rev 2010; 68(11): 656–70.‏

(2.) Maier T, Schieber A, Kammerer DR, Carle R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 2009; 112(3): 551–9.‏

(3.) Natella F, Belleli F, Gentili V, Ursini F, Scaccini C. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem 2002; 50(26): 7720–5.

(4.) Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. Int J Food Sci Technol 2013; 48(2): 221–37.

(5.) Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 2004; 32(12): 1377–82.

(6.) Bagchi D, Bagchi M, Stohs SJ, Ray SD, Sen CK, Preuss HG. Cellular protection with proanthocyanidins derived from grape seeds. Ann N Y Acad Sci 2002; 957(1): 260–70.

(7.) Maheswari MU, Rao PGM. Antihepatotoxic effect of grape seed oil in rat. Indian J Pharmacol 2005; 37(3): 179–82.‏

(8.) Bagchi D, Ra SD, Bagchi M, Preuss HG, Stohs, SJ. Mechanistic pathways of antioxidant cytoprotection by a novel IH636 grape seed proanthocyanidin extract.‏ Indian J Exp Biol 2002; 40(6): 717–26

(9.) Ismail AF, Salem AA, Eassawy MM. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat. J Photochem Photobiol B 2016; 160: e1–10. doi: 10.1016/j.jphotobiol.2016.03.027

(10.) Wu F, Sun H, Kluz T, Clancy H A, Kiok K, Costa M. Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol 2012; 258(2): 166–75.

(11.) Mishra S, Bharagava RN. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2016; 34(1): 1–32.

(12.) Fernández PM, Vinarta SC, Bernal AR, Cruz EL, Figueroa LI. Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere 2018; 208: 139–48.

(13.) Junaid M, Hashmi MZ, Malik RN, Pei DS. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: a review. Environ Sci Pollut Res Int 2016; 23(20): 20151–67.

(14.) Marouani N, Tebourbi O, Hallegue D, et al. Mechanisms of chromium hexavalent-induced apoptosis in rat testes. Toxicol Ind Health 2017; 33(2): 97–106.

(15.) ‏Khan MR, Siddiqui S, Parveen K, Javed S, Diwakar S, Siddiqui WA. Nephroprotective action of tocotrienol-rich fraction (TRF) from palm oil against potassium dichromate (K2Cr2O7)-induced acute renal injury in rats. Chem Biol Interact 2010; 186(2): 228–38.

(16.) Yam‐Canul P, Chirino Y I, Sánchez‐González DJ, Martínez‐Martínez C M, Cruz C, Pedraza‐Chaverri J. PJ34, a poly adenosine diphosphate‐ribose polymerase inhibitor, attenuates chromate‐induced nephrotoxicity. Basic Clin Pharmacol Toxicol 2008; 102(5): 483–8.

(17.) Parveen K, Khan M R, Siddiqui WA. Pycnogenol® prevents potassium dichromate (K2Cr2O7)-induced oxidative damage and nephrotoxicity in rats. Chem Biol Interact 2009; 181(3): 343–50.

(18.) ‏Pedraza-Chaverrí J, Barrera D, Medina-Campos ON, et al. Time course study of oxidative and nitrosative stress and antioxidant enzymes in K 2 Cr 2 O 7-induced nephrotoxicity. BMC Nephrol 2005; 6(1): e4. doi: 10.1186/1471-2369-6-4

(19.) Fatima S, Mahmood R. Vitamin C attenuates potassium dichromate-induced nephrotoxicity and alterations in renal brush border membrane enzymes and phosphate transport in rats. Clin Chim Acta 2007; 386(1/2): 94–9.

(20.) Molina-Jijón E, Zarco-Márquez G, Medina-Campos ON, et al. Deferoxamine pretreatment prevents Cr (VI)-induced nephrotoxicity and oxidant stress: role of Cr (VI) chelation. Toxicology 2012; 291(1/3): 93–101.

(21.) Elbetieha A, Al-Hamood M H. Long-term exposure of male and female mice to trivalent and hexavalent chromium compounds: effect on fertility. Toxicology 1997; 116(1/3): 39–47.

(22.) Shawky SM, Ramadan SG, Orabi, SH. Hemato-biochemical, behavioral and neurological effects of vitamin C administration against lead exposure in mice. Int J Adv Res 2014; 2: 418–29.

(23.) Fawcett J K, Scott J. A rapid and precise method for the determination of urea. Journal of clinical pathology.1960; 13(2): 156–9.

(24.) Bartels H, Böhmer M, Heierli C. Serum creatinine determination without protein precipitation. Clin Chim Acta 1972; 37: 193–7.

(25.) Trinder P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol 1969; 22(2): 246.‏‏

(26.) ‏‏‏El-Masry TA, Al-Shaalan NH, Tousson E, El-Morshedy K, Al-Ghadeer A. P53 expression in response to equigan induced testicular injury and oxidative stress in male rat and the possible prophylactic effect of star anise extracts. Annu Res Rev Biol 2017; 14(1):1–8.‏

(27.) Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351–8.‏

(28.) Beutler E. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61: 882–8.‏

(29.) Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121–6.

(30.) Bancroft JD, Steven A, Turner DR. Theory and practice of histological techniques. New York : Churchill Livingstone,‏ 1996: 129.

(31.) Harris HF. On the rapid conversion of haematoxylin into haematein in staining reactions. J Appl Microsc Lab Methods 1900; 3(3): 777–80.‏

(32.) Klaude M, Eriksson S, Nygren J, Ahnström G. The comet assay: mechanisms and technical considerations. Mutat Res 1996; 363(2): 89–6.‏

(33.) Orabi SH, Shawky SM, Wirtu G, Mansour DA, Abdelaziz SA, Elsabbagh HS. Ginkgo biloba mitigates aluminum induced neurotoxicity in rats. Int J Biochem Res Rev 2018; 24(4): 1–14.

(34.) Collins AR, Oscoz AA, Brunborg G, et al. The comet assay: topical issues. Mutagenesis 2008; 23(3): 143–51.‏

(35.) Kalayarasan S, Sriram N, Sureshkumar A, Sudhandiran G. Chromium (VI)‐induced oxidative stress and apoptosis is reduced by garlic and its derivative S‐allylcysteine through the activation of Nrf2 in the hepatocytes of Wistar rats. J Appl Toxicol 2008; 28(7): 908–19.

(36.) Bagchi D, Garg A, Krohn RL, Bagchi M, Tran M X, Stohs, S J. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 1997; 95(2): 179–89.‏

(37.) Gupta N, Goswami B, Mittal P. Effect of standard anthracycline based neoadjuvant chemotherapy on circulating levels of serum IL-6 in patients of locally advanced carcinoma breast–a prospective study. Int J Surg 2012; 10(10): 638–40.‏

(38.) Abdel-Rahman G H, Abdel-Hady E K, Al-Harbi MS. Protective role of melatonin against chromium-induced nephrotoxicity in male rabbits. Global Vet 2012; 9(2): 225–31.‏

(39.) Sahu BD, Koneru M, Bijargi SR, Kota A, Sistla R. Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: Involvement of oxidative stress, apoptosis and inflammation. Chem Biol Interact. 2014; 223: 69–79.‏

(40.) Song MF, Yang Y, Yi ZW, et al. Sema 3A as a biomarker of the activated mTOR pathway during hexavalent chromium-induced acute kidney injury. Toxicol Lett 2018; 299: 226–35.

(41.) Mohamed AAR, El-Houseiny W, El-Murr AE, Ebraheim LL, Ahmed AI, El-Hakim YM A. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: role of curcumin supplemented diet. Ecotoxicol Environ Saf 2020; 188: e109890. doi: 10.1016/j.ecoenv.2019.109890

(42.) Fernández-Mar MI, Mateos R, García-Parrilla MC, Puertas B, Cantos-Villar E. Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review. Food Chem 2012; 130(4): 797–813.

(43.) Rockenbach II, Jungfer E, Ritter C, et al. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res Int 2012; 48(2): 848–55.

(44.) Davidov-Pardo G, McClements DJ. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 2015; 167: 205–12.

(45.) Du Y, Guo H, Lou H. Grape seed polyphenols protect cardiac cells from apoptosis via induction of endogenous antioxidant enzymes. J Agric Food Chem 2007; 55(5): 1695–701.

(46.) Morin B, Narbonne JF, Ribera D, Badouard C, Ravanat JL. Effect of dietary fat-soluble vitamins A and E and proanthocyanidin-rich extract from grape seeds on oxidative DNA damage in rats. Food Chem Toxicol 2008; 46(2): 787–96.

(47.) Ismail AF, Salem AA, Eassawy MM. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat. J Photochem Photobiol B 2016; 160: 1–10.

(48.) Hassan HA, Edrees GM, El-Gamel EM, El-sayed EA. Amelioration of cisplatin-induced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage. Cytotechnology 2014; 66(3): 419–29.

(49.) LI SG, Ding YS, Qiang NIU, et al. Grape seed proanthocyanidin extract alleviates arsenic-induced oxidative reproductive toxicity in male mice. Biomed Environ Sci 2015; 28(4): 272–80.

(50.) Ulusoy S, Ozkan G, Yucesan FB, et al. Antiapoptotic and antioxidant effects of grape seed proanthocyanidin extract in preventing cyclosporine A-induced nephropathy. Nephrology 2012; 17(4): 372–9.

(51.) Abd Eldaim MAA, Tousson E, El Sayed I El, Abd El-Aleim A H, Elsharkawy H N. Grape seeds proanthocyanidin extract ameliorates Ehrlich solid tumor induced renal tissue and DNA damage in mice. Biom Pharmacother 2019; 115: e108908. doi: 10.1016/j.biopha.2019.108908



  • There are currently no refbacks.

Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E:
Published by