ASSESSMENT OF MICROBIOLOGICAL LOAD OF SMALL RUMINANT CARCASSES, LIVERS, SOME LYMPH NODES, TOOLS AND KNIFE SAMPLES IN SLAUGHTERHOUSE

Halil Durmuşoğlu, Gökhan Kürşad İncili, Alper Güngören, Osman İrfan İlhak

Abstract


The aim of this study was to determine the microbiological loads of small animal carcasses, carcass lymph nodes, whole liver surface, liver lymph nodes and some tools contacting with carcass and offal. Total 630 samples taken from small animal carcasses, livers, hepatic lymph nodes, subiliac and prescapular lymph nodes, staff knives and slaughterhouse tools samples (stainless steel table, plastic crates, offal carts) were investigated for mesophilic aerobic bacteria, Enterobacteriaceae, Escherichia coli counts and Salmonella spp. The mean total aerobic mesophilic bacteria (TAMB), Enterobacteriaceae and E. coli numbers of the carcasses were 3.6, 0.6, and 0.1 log10 CFU/cm2 , respectively, and the most contaminated region among the carcass sampling points was flank. The mean TAMB, Enterobacteriaceae and E. coli counts of the liver surfaces were 6.0, 3.7, 2.9 log10 CFU/liver, respectively. The average TAMB, Enterobacteriaceae and E. coli numbers of the knives were found as 6.3, 2.9 and 2.1 log10 CFU/blade, and the average TAMB, Enterobacteriaceae and E. coli counts of the slaughterhouse surfaces were 5.1, 1.6, 0.5 log10 CFU/cm2. Salmonella spp. was detected in 4% of the liver samples and 10% of the knives samples. Consequently, the presence of Salmonella on the surface of livers and blades, and high number of E. coli on the livers, blades and tools show that a public health risk may arise at any time, and staff should pay extra attention to the “Good Hygiene Practices” and Food Safety Management Systems (such as HACCP) applied in slaughterhouses.

Key words: carcass; liver; lymph node; microbiological quality; Enterobacteriaceae; Escherichia coli; Salmonella spp.


OCENA MIKROBIOLOŠKE OBREMENITVE TRUPOV MALIH PREŽVEKOVALCEV, JETER IN NEKATERIH BEZGAVK TER ORODIJ IN NOŽEV V KLAVNICI

Povzetek: Namen študije je bil določiti mikrobiološko obremenitev trupov malih živali, bezgavk na trupih, celotne površine jeter, jetrnih bezgavk in nekaterih orodij, ki prihajajo v stik s trupom ter drobovjem. Pregledanih je bilo 630 vzorcev trupel malih živali, jeter, bezgavk, jetrnih bezgavk, nožev in orodij za klavnice (mize iz nerjavečega jekla, plastični zaboji, zaboji za drobovino). Ugotavljali smo prisotnost mezofilnih aerobnih bakterij, Enterobacteriaceae ter število bakterij Escheria coli in Salmonella spp. Povprečna skupna količina aerobnih mezofilnih bakterij (TAMB), Enterobacteriaceae in E. coli je bila 3,6, 0,6 in 0,1 log10 CFU/cm2. Najbolj onesnaženo področje pri vzorčenju trupov je bilo na boku trupov. Povprečno število TAMB, Enterobacteriaceae in E. coli na površinah jeter je bilo 6,0, 3,7 in 2,9 log10 CFU/jetra. Povprečno število TAMB, Enterobacteriaceae in E. coli na nožih je bilo 6,3, 2,9 in 2,1 log10 log10 CFU/rezilo, povprečno število TAMB, Enterobacteriaceae in E. coli na klavniških površinah pa 5,1 in 1,6, 0,5 log10 CFU/cm2. Salmonello spp. smo odkrili v 4 odstotkih vzorcev jeter in na 10 odstotkih nožev. Prisotnost salmonele na površini jeter in rezil ter veliko število bakterij E. coli na jetrih, rezilih in orodju kažejo na to, da te bakterije lahko predstavljajo tveganje za javno zdravje. Osebje bi moralo dodatno pozornost nameniti „dobri higienski praksi “in sistemom upravljanja varne hrane (na primer HACCP), ki se uporablja v klavnicah.

Ključne besede: trup zaklanih živali; jetra; limfni vozli; mikrobiološko onesnaženje; Enterobacteriaceae; Escheria coli; Salmonella spp.


Full Text:

PDF

References


(1.) Wambui J, Lamuka P, Karuri E, Matofari J, Njage PMK. Microbial contamination level profiles attributed to contamination of beef carcasses, personnel, and equipment: case of small and medium enterprise slaughterhouses. J Food Protect 2018; 81: 684–91.

(2.) EFSA, ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 2017; 15: e5077. doi: 10.2903/j.efsa.2017.5077

(3.) Cetin E, Serbetcioglu T, Temelli S, Eyigor A. Nontyphoid Salmonella carriage, serovar profile and antimicrobial resistance phenotypes in slaughter cattle. J Food Saf 2019; 39: e12603. doi: 10.1111/jfs.12603

(4.) Bailey G, Huynh L, Govenlock L, Jordan D, Jenson I. Low prevalence of Salmonella and shiga toxin-producing Escherichia coli in lymph nodes of Australian beef cattle. J Food Prot 2017; 80: 2105–11.

(5.) Gragg SE, Loneragan GH, Nightingale KK, et al. Substantial within-animal diversity of Salmonella isolates from lymph nodes, feces, and hides of cattle at slaughter. Appl Environ Microbiol 2013; 79: 4744–50.

(6.) Im MC, Seo KW, Bae DH, Lee YJ. Bacterial quality and prevalence of foodborne pathogens in edible offal from slaughterhouses in Korea. J Food Prot 2016; 79: 163–8.

(7.) Lee JW, Lee YJ. The bacterial quality and prevalence of foodborne pathogens of edible offals from slaughterhouses in Gyeongsangbuk-do. J Prev Vet Med 2016; 40: 53–8.

(8.) Kirrella GAK, Deeb AMM, Abdallah RMI. Safety of frozen liver for human consumption. J Food Drug Anal 2017; 25: 520–4.

(9.) El-Tom GM, Abdel Rahman SM, Elamin EDM, Yassin TE. Isolation of the Salmonella serotype San-Diego from lymph nodes of slaughtered goats. Sudan J Vet Res 2000; 16: 61–5.

(10.) Woldemariam E, Molla B, Alemayehu D, Muckle A. Prevalence and distribution of Salmonella in apparently healthy slaughtered sheep and goats in Debre Zeit, Ethiopia. Small Ruminant Res 2005; 58: 19–24.

(11.) Hanlon KE, Miller MF, Guillen LM, Brashears MM. Salmonella presence in mandibular, mesenteric, and subiliac lymph nodes collected from sheep and goats in the United States. J Food Prot 2016; 79: 1977–81.

(12.) ISO 17604:2015. Microbiology of the food chain – Carcass sampling for microbiological analysis. Geneva : International Organization for Standardization, 2015.

(13.) ISO 4833:2003. Microbiology of food and animal feeding stuffs- Horizontal methods for enumeration of microorganisms-Colony-count technique at 30 degrees. Geneva : International Organization for Standardization, 2003.

(14.) ISO 16649-2:2001. Microbiology of food and animal feeding stuffs – Horizontal methods for the enumeration of β-glucorunidase – positive Escherichia coli. Geneva : International Organization for Standardization, 2001.

(15.) ISO 21528-2:2004. Microbiology of food and animal feeding stuffs – Horizontal methods for the detection and enumeration of Enterobacteriaceae. Geneva : International Organization for Standardization, 2004.

(16.) ISO 6579:2002. Microbiology of food and animal feeding stuffs – Horizontal method for the detection of Salmonella spp. Geneva : International Organization for Standardization, 2002.

(17.) Gürbüz Ü, Telli AE, Kahraman HA, Balpetekkülcü D, Yalçın S. Determination of microbiological contamination, pH and temperature changes in sheep and cattle carcasses during the slaughter and pre-cooling processes in Konya, Turkey. Ital J Food Sci 2018; 30: 828–39.

(18.) Petruzzelli A, Osimani A, Pasquini M, et al. Trends in the microbial contamination of bovine, ovine and swine carcasses in three small-scale abattoirs in central Italy: a four-year monitoring. Meat Sci 2016; 111: 53–9.

(19.) Alonso-Calleja C, Guerrero-Ramos E, Capita R. Hygienic status assessment of two lamb slaughterhouses in Spain. J Food Prot 2017; 80: 1152–8.

(20.) Salmela ST, Fredriksson-Ahomaa M, Hatakka M, Nevas M. Microbiological contamination of sheep carcasses in Finland by excision and swabbing sampling. Food Control 2013; 31: 372–8.

(21.) Pyz-Łukasik R, Paszkiewicz W. Hygiene assessment of sheep slaughter cycle. Bull Vet Inst Pulawy 2014; 58: 243–6.

(22.) Ivanovic S, Nesic K, Pisinov B, Pavlovic I. The microbiological status of carcasses of goats slaughtered in an inadequate facility. Proc Food Sci 2015; 5: 109–12.

(23.) Nouichi S, Hamdi TM. Superficial bacterial contamination of ovine and bovine carcasses at El-Harrach slaughterhouse (Algeria). Eur J Sci Res 2009; 38, 474–85.

(24.) Teklu A, Negussie H. Assessment of risk factors and prevalence of Salmonella in slaughtered small ruminants and environment in an export abattoir, Modjo, Ethiopia. Am Eurasian J Agric Environ Sci 2011; 10: 992–9.

(25.) Dabassa A, Bacha K. The prevalence and antibiogram of Salmonella and Shigella isolated from abattoir, Jimma Town, South West Ethiopia. Int J Pharm Biol Res 2012; 3: 143–8.

(26.) Bilei S, Flores Rodas EM, Tolli R, et al. Prevalence of major pathogens on sheep carcasses slaughtered in Italy. Ital J Food Sci 2012; 24: 9–18.

(27.) Nouichi, S, Ouatouat R, Can HY, et al. Prevalence and antimicrobial resistance of Salmonella isolated from bovine and ovine samples in slaughterhouses of Algiers, Algeria. J Hell Vet Med Soc 2018; 69: 863–2.

(28.) Villarreal-Silva M, Genho DP, Ilhak I, et al. Tracing surrogates for enteric pathogens inoculated on hide through the beef harvesting process. J Food Prot 2016; 79: 1860–7.

(29.) Bakhtiary F, Sayevand HR, Remely M, Hippe B, Hosseini H, Haslberger AG. Evaluation of bacterial contamination sources in meat production line. J Food Qual 2016; 39: 750–6.

(30.) Bell RG. Distribution and sources of microbial contamination on beef carcasses. J Appl Microbiol 1997; 82: 292–300.

(31.) Bell RG, Hathaway SC. The hygienic efficiency of conventional and inverted lamb dressing systems. J Appl Bacteriol 1996; 81: 225–34.

(32.) EC. Regulation (EC) No 853/2004 of The European Parliament and the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off J Eur Commun 2004; L139: 55–205.




DOI: https://doi.org/10.26873/SVR-950-2020

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si