EFFECTS OF MESENCHYMAL STEM CELL TRANSPLANTATION INTO ISCHEMIC BILE DUCT INJURY TISSUES OF RATS ON THE EXPRESSION OF VASCULAR ENDOTHELIAL CELL PHENOTYPE AND THE INCREASE OF VASCULAR DENSITY
DOI:
https://doi.org/10.26873/SVR-844-2019Abstract
We aimed to evaluate the effects of mesenchymal stem cell (MSC) transplantation into the ischemic bile duct injury tissues of rats on the expression of vascular endothelial cell phenotype and the increase of vascular density. The bone marrow of male Wistar rats aged 2-4 weeks was sampled to culture MSCs by the direct adhesion method. Forty-six female rats were randomly divided into a transplantation group (group A) and a non-transplantation group (group B). Group A was transplanted with MSCs (1×106 cells/site, a total of 8 sites) into ischemic biliary lesion. After 21 days, the bile ducts with lesions were removed. The transplanted MSCs were tracked by a combination of in situ hybridization staining of sex-determining region Y gene with CD34 immunohistochemical staining (double labeling). Microvascular and vascular endothelial growth factors were labeled by immunohistochemical staining to calculate microvascular density (MVD). After 21 days of injection, double labeling revealed that a small portion of Y-chromosome positive cells in group A (brown cell nucleus) had CD34 antigen phenotype (bluish violet). MVD of group A ((63 ± 18)/HP) was higher than that of group B ((53 ± 14)/HP), and the vascular endothelial growth factor (VEGF) expressions of the two groups were significantly different (P<0.05). The formation of vascular endothelial cells after MSC transplantation improved the blood supply of bile duct by secreting VEGF.
Key words: mesenchymal stem cell; transplantation; in situ hybridization; immunohistochemistry; bile duct injury
UČINKI TRANSPLANTACIJE MEZENHIMALNIH MATIČNIH CELIC V ISHEMIJSKO TKIVNO POŠKODBO ŽOLČNIH KANALOV NA IZRAŽANJE ŽILNEGA ENDOTELIJSKEGA FENOTIPA CELIC IN POVEČANJE CELIČNE GOSTOTE
Povzetek: V študiji smo želeli oceniti učinke presaditve mezenhimskih matičnih celic (MSC) v ishemična tkiva poškodovanih žolčnih kanalov pri podganah na izražanje fenotipa žilnih endotelijskih celic in na žilno gostoto. Celice kostnega mozga podganjih samcev seva Wistar, starih 2 – 4 tedne smo gojili v celični kulturi v ustreznih gojiščih. Šestinštirideset samic podgan je bilo naključno razdeljenih v presaditveno skupino (skupina A) in ne-presaditveno skupino (skupina B). Skupini A smo presadili MSC (1 × 106 celic/mesto, skupaj 8 mest) v ishemično poškodbo žolčnih kanalov. Po 21 dneh so bili poškodovani žolčni kanali odvzeti za histološke preiskave. Presajene MSC so bile spremljane s kombinacijo dveh metod - hibridizacije in situ, s katero smo označili gen Y za določanje spola, ter z imunohistokemičnim barvanjem proti beljakvoini CD34 (dvojno označevanje). Mikrovaskularni in vaskularni endotelni rastni faktorji so bili označeni z imunohistokemičnim barvanjem, na podlagi katerega smo izračunali mikrovaskularno gostoto (MVD). Enaindvajset dni po injiciranju je dvojno označevanje pokazalo, da je majhen del celic s kromosomov Y (presajenih celic) v skupini A izražal antigen CD34. MVD skupine A (63 ± 18)/HP) je bil večji od MVD v skupini B ((53 ± 14)/HP) in izražanje žilnih endotelnih rastnih faktorjev (VEGF) se je statistično značilno razlikovalo med skupinama (P < 0,05). Tvorba žilnih endotelnih celic po presaditvi MSC je izboljšala preskrbo žolčnih kanalov s krvjo preko izločanja VEGF.
Ključne besede: mezenhimske matične celice; presaditev; hibridizacija in situ; imunohistokemija; poškodba žolčnih kanalov
References
(1.) Rasmussen JG, Frøbert O, Holst-Hansen C, et al. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplant 2014; 23: 195–206.
(2.) Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126: 2123–38.
(3.) Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells-current trends and future prospective. Biosci Rep 2015; 35: e00191. doi: 10.1042/BSR20150025
(4.) Rogers TB, Pati S, Gaa S, et al. Mesenchymal stem cells stimulate protective genetic reprogramming of injured cardiac ventricular myocytes. J Mol Cell Cardiol 2011; 50: 346–56.
(5.) Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 2015; 37: 2415–24.
(6.) Zhao DF, Chen DZ, Lv JS, Lang R, Jin ZK, Qing H. Establishment of an animal model of biliary ischemic stenosis with clamping in mice. Transplant Proc 2008; 40: 1303–5.
(7.) Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121: 368–74.
(8.) Song SH, Jeong IG, You D, et al. VEGF/VEGFR2 and PDGF-B/PDGFR-β expression in non-metastatic renal cell carcinoma: a retrospective study in 1,091 consecutive patients. Int J Clin Exp Pathol 2014; 7: 7681–9.
(9.) Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995; 36: 169–80.
(10.) Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94: 678–85.
(11.) Cao X, Wu X, Frassica D, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci U S A 2011; 108: 1609–14.
(12.) Iwase T, Nagaya N, Fujii T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 2005; 66: 543–51.
(13.) Barachini S, Danti S, Pacini S, et al. Plasticity of human dental pulp stromal cells with bioengineering platforms: a versatile tool for regenerative medicine. Micron 2014; 67: 155–68.
(14.) Khan I, Ali A, Akhter MA, et al. Preconditioning of mesenchymal stem cells with 2, 4-dinitrophenol improves cardiac function in infarcted rats. Life Sci 2016; 162: 60–9.
(15.) Hashemi SM, Ghods S, Kolodgie FD, et al. A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Heart J 2008; 29: 251–9.
(16.) Yang J, Gao F, Zhang Y, Liu Y, Zhang D. Buyang Huanwu Decoction (BYHWD) enhances angiogenic effect of mesenchymal stem cell by upregulating VEGF expression after focal cerebral ischemia. J Mol Neurosci 2015; 56: 898–906.
(17.) Calio ML, Marinho DS, Ko G, et al. Transplantation of BM-MScs promotes angiogenesis and decreases superoxide levels in the brain of hypertensive rats: relevance for homologous transplantation as stroke therapy. Free Radical Biol Med 2018; 128: S124.
(18.) Lee M, Jeong SY, Ha J, et al. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun 2014; 446: 983–9.
(19.) Klinker MW, Marklein RA, Lo Surdo JL, Wei CH, Bauer SR. Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci U S A 2017; 114: E2598–607.