ASSESSMENT OF ENVIRONMENTAL POLLUTION WITH METALS IN SOME INDUSTRIAL REGIONS OF KOSOVO USING CHICKEN (Gallus gallus domesticus) BREAST FEATHERS

Imer Haziri, Fatgzim Latifi, Adem Rama, Muhamet Zogaj, Arben Haziri, Hamdi Aliu, Arben Sinani, Ibrahim Mehmeti, Jože Starič

Abstract


The aim of this study was to assess the presence of metals in three regions of Kosovo using chicken (Gallus gallus domesticus) breast feathers collected from the industrial regions of Mitrovica and Obiliq and the non-industrial region of Dragash. This study was carried out from September to November 2016, and feathers were collected from 90 individual domestic chickens housed as free range. The concentrations of metals in the chicken feathers were determined with atomic absorption spectrometry (AAS). The range of average measured concentrations of metals (µg g-1) in examined regions were: Zn 109-131, Mn 6.17-31.30, Cu 22.1-27.2, Cr 5.09-19.0, Ni 12.3-15.8, Pb <0.0945-15.5, Cd 11.1-12.3 and As ><0.099-7.44. The highest average levels of metals were determined in regions (µg g-1): Dragash: Zn 131, Cu 27.2, Mn 31.3, Cr 19.0, Ni 15.8; Mitrovica As 7.44, Cd 12.3, Pb 15.5. High statistically significant differences (p><0.001) were found between the three regions for Pb, As, Mn, and Cr content. There were no significant differences (p>0.05) between the Mitrovica and Obiliq regions in terms of Zn content, Mitrovica and Dragash in terms of Cu or between the Obiliq and Dragash regions in terms of Cd content. These results should concern the environmental agencies in Kosovo and encourage them to take concrete steps by periodically checking these pollutants in these two industrial regions. Based on our results, we recommend that programmes for monitoring environmental pollution from metals could use chicken feathers as an important and valuable test material.

Key words: trace metals; AAS; chicken feathers; environmental pollution; Kosovo

 

OCENA ONESNAŽENOSTI OKOLJA S KOVINAMI NA OSNOVI PREISKAVE PRSNIH PERES PIŠČANCEV (Gallus gallus domesticus) V NEKATERIH INDUSTRIJSKIH PODROČJIH KOSOVA

Povzetek: Namen raziskave je bil oceniti prisotnost kovin v treh področjih Kosova s pomočjo piščančjega (Gallus gallus domesticus) perja, vzorčenega v industrijskih področjih Mitrovica in Obiliq ter neindustrijski regiji Dragaš. Raziskava je bila izvedena od septembra do novembra 2016, perje pa je bilo odvzeto 90 piščancem v prosti dvoriščni reji. Koncentracije kovin v piščančjih peresih so bile določene z atomsko absorpcijsko spektrometrijo (AAS). Razpon povprečnih izmerjenih koncentracij kovin (µg/g perja) v preiskovanih območjih je bil: Zn 109-131, Mn 6,17-31,30, Cu 22,1-27,2, Cr 5,09-19,0, Ni 12,3-15,8, Pb<0,0945-15,5, Cd 11,1-12,3 in As< 0,09-7,44. Najvišje povprečne koncentracije kovin (µg/g) so bile ugotovljene v področjih Dragaš: Zn 131, Cu 27,2, Mn 31,3, Cr 19,0, Ni 15,8 in Mitrovica: As 7,44, Cd 12,3, Pb 15,5. Statistično pomembne razlike (p<0,001) med tremi področji so bile ugotovljene za vsebnost Pb, As, Mn in Cr. Statistično pomembnih razlik nismo ugotovili v vsebnosti Zn med Mitrovico in Obiliqom, v vsebnosti Cu med Mitrovico in Dragašem ter v vsebnosti Cd med Mitrovico in Dragašem. Rezultati raziskave bi morali biti zaskrbljujoči za okolijske agencije na Kosovu in bi jih morali spodbuditi, da sprejmejo konkretne ukrepe, predvsem občasno preverjanje omenjenih onesnaževal v teh industrijskih področjih. Na osnovi naših rezultatov priporočamo spremljanje onesnaženosti okolja s kovinami z uporabo piščančjega perja kot primernega in uporabnega preskusnega materiala.

Ključne besede: kovine v sledovih; AAS; piščančje perje; onesnaženost okolja; Kosovo


Full Text:

PDF

References


(1) Chowdhury BA, Chandra RK. Biological and health implications of toxic heavy metal and essential trace element interaction. Prog Food Nutr Sci 1987; 11: 55–113.

(2) He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 2005; 19: 125–40. https://doi.org/10.1016/j.jtemb.2005.02.010

(3) Tamás MJ, Martinoia E. Molecular biology of metal homeostasis and detoxification: from microbes to man. Berlin; Heidelberg : Springer Verlag, 2006.

(4) Čelechovská O, Malota L, Zima S. Entry of heavy metals into food chains: a 20-year comparison study in Northern Moravia (Czech Republic) Acta Vet Brno 2008; 77: 645–52. https://doi.org/10.2754/avb200877040645

(5) Haziri I, Haziri A, Ozuni E, Mehmeti I. Dynamics of malondialdehyde depending on Cd concentration and their relation with the daily weight gain on the chicken hybrid. Asian J Anim Vet Adv 2017; 12: 38–43. doi:10.3923/ajava.2017.38.43.

(6) Florea AM, Busselberg D. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 2006; 19: 419–27. doi:10.1007/s10534-005-4451-x.

(7) Filippo CD, Cuzzocrea S, Rossi F, Marfella R, D’Amico M. Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovasc Drug Rev 2006; 24: 77–87. doi:10.1111/j.1527-3466.2006.00077.x.

(8) Agrawal A, Apnte-Mellado A, Premkumar JB, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 2012; 10: e49 (1–31). https://doi.org/10.1186/1477-7827-10-49.

(9) Sosa V, Molinéa T, Somoza R, Paciucci R, Kondohc H, Matilde Ell. Oxidative stress and cancer: an overview. Ageing Res Rev 2013;‎ 12: 376–90. doi:10.1016/j.arr.2012.10.004.

(10) Haziri I, Rama A, Latifi F, Beqiraj-Kalamishi D, Mehmeti I, Haziri A. Effect of different cadmium concentration on some biochemical parameters in “Isa Brown” hybrid chicken. Chemistry 2017; 26: 763–72.

(11) Pott U, Turpin DH. Assessment of atmospheric heavy metals by moss monitoring with Isothecium stoloniferum brid, in the Fraser Valley, B.C., Canada. Water Air Soil Pollut 1998; 101: 25–44. doi:10.1023/A:1004916110857.

(12) Gerdol R, Bragazza L, Marchesini R, et al. Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environ Pollut 2000; 108: 201–8. https://doi.org/10.1016/S0269-7491(99)00189-X

(13) AksoyA, Özutü MA. Nerium oleander L. as a biomonitor of Pb and other heavy metal pollution in Mediterranean environments. Sci Total Environ 1997; 205: 145–50. doi:10.1016/S0048-9697(97)00195-2.

(14) Bonada N, Prat N, Resh VH, Statzner B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 2006; 51: 495–523. https://doi.org/10.1146/annurev.ento.51.110104.151124

(15) Cherry DS, Carins J. Biological monitoring part V: preference and avoidance studies. Water Res 1982; 16: 263–301.

(16) Latifi F, Haziri I, Rama A, Musa F, Haziri A, Sinani A. Assessment of heavy metal contamination in some organs of the common carp growing in lakes in Kosovo. Veterinaria (Sarajevo) 2017; 66: 139–44.

(17) Rombola P, Battisti S, Scaramozzino P. Animal biomonitoring and micropollutants in public health: review. Epidemiol Prev 2012; 36: 5–14.

(18) Erwin M, Custer TW. Herons as indicators. In: Kushlan JA, Hafner H, eds. Heron conservation. San Diego: Academic Press, 2000: 310–30.

(19) Demirbaş A. Proximate and heavy metal composition in chicken meat and tissues. Food Chem 1999; 67: 27–31. https://doi.org/10.1016/S0308-8146(99)00103-X

(20) Mariam I, Iqbal S, Nagra SA. Distribution of some trace and macro minerals in beef, mutton and poultry. Int J Agric Biol 2004; 6: 816–20.

(21) Rama A, Bakalli RI, Mulabegovic N, Selimi Q, Hulaj B, Kastrati R. Lead accumulation in laying hens fed automotive waste oil. In: Annual Meeting of International Poultry Scientific Forum. Atlanta : International Poultry Scientific Forum, 2006: 195, poster S-P161

(22) Iwegbue CMA, Nwajei GE, Iyoha EH. Heavy metal residues of chicken meat and gizzard and turkey meat consumed in southern Nigeria. Bulg J Vet Med 2008; 11: 275–80.

(23) Carneiro M, Colaço B, BrandãoR, et al. Biomonitoring of heavy metals (Cd, Hg and Pb) and metalloid (As) with the Portuguese common buzzard (Buteo buteo). Environ Monit Assess 2014; 186: 7011–21. doi:10.1007/s10661-014-3906-3.

(24) Burger J, Gochfeld M. Biomonitoring of heavy metals in the pacific basin using avian feathers. Environ Toxicol Chem 1995; 14: 1233–9. doi:10.1002/etc.5620140716

(25) Jaspers V, Dauwe T, Pinxten R, Bervoest L, Blust R, Ens M. The importance of exogenous contamination on heavy metal levels in bird feathers experiment with free living great tits, Parus major. J Environ Monit 2004; 6: 356–60. doi:10.1039/b314919f.

(26) Kim J, Koo TH. The use of feathers to monitor heavy metal contamination in Herons, Korea. Arch Environ Contam Toxicol 2007; 53: 435–41. doi:10.1007/s00244-006-0196-y.

(27) Markowski M, Kaliński A, Skwarska J, et al. Avian feathers as bioindicators of the exposure to heavy metal contamination of food. Bull Environ Contam Toxicol 2013; 92: 3302–5. doi:10.1007/s00128-013-1065-9.

(28) Burger J. Metals in avian feathers bioindicators of environmental pollution. Rev Environ Contam Toxicol 1993; 5: 203–311.

(29) Monteiro LR. Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 1995; 80: 851–70. doi:10.1007/BF01189736.

(30) Braune BM, Gaskin DE. Mercury levels in Bonaparte’s gull (Larus philadelphia) during autumn moult in the Quoddy region, New Brunswick, Canada. Arch Environ Contam Toxicol 1987; 16: 539–49. doi:10.1007/BF01055810.

(31) Malik RN, Zeb N. Assessment of environmental contamination using feathers of Bubulcus ibis L., as a biomonitor of heavy metal pollution, Pakistan. Ecotoxicology 2009; 18: 522–36. doi:10.1007/s10646-009-0310-9.

(32) Lewis SA, Furness RW. Mercury accumulation and excretion by laboratory reared black-headed gulls (Larus ridibundus) chicks. Arch Environ Contam Toxicol 1991; 21: 316–20. doi:10.1007/BF01055352.

(33) Zamani-Ahmadmahmoodi R, Esmaili-Sari A, Savabieasfahani M, Ghasempouri S, Bahramifar N. Mercury pollution in three species of waders from Shadegan. Bull Environ Contam Toxicol 2010; 84: 326–30. doi:10.1007/s00128-010-9933-z.

(34) Zogaj M, Paçarizi M, Düring RA. Spatial distribution of heavy metals and assessment of their bioavailability in agricultural soils of Kosovo. Carpath J Earth Environ Sci 2014; 9: 221–30.

(35) Nannoni F, Protano G, Riccobono F. Uptake and bioaccumulation of heavy elements by two earthworm species from a smelter contaminated area in northern Kosovo. Soil Biol Biochem 2011; 43: 2359–67. https://doi.org/10.1016/j.soilbio.2011.08.002

(36) Millaku L, Imeri R, Trebicka A. Histopathological changes in testes of house sparrow (Passer domesticus). J Mater Environ Sci 2015; 6: 1292–6.

(37) DobroshiF, Malollari I, Baruti B, Lajqi N, Salihu D, Kelmendi M. Study on contamination of surface waters in Mitrovica suburban area. J Int Environ Appl Sci 2015; 10: 228–32.

(38) Frese SD, Klitgaard R, Pedersen EK. Environmental management in Kosovo: heavy metal emission from Trepca. TekSam Report, 2003/2004: 41–70. https://wiki.rit.edu/download/attachments/71962211/Environmental_management_in.pdf?version=1andmodificationDate=1317036366967andapi=v2

(39) Borgna L, Di Lella LA, Nannoni F, et al. The high contents of Pb in soils of northern Kosovo. J Geochem Explor 2009; 101: 137–46. https://doi.org/10.1016/j.gexplo.2008.05.001

(40) Veliu A, Syla A. Air pollution with particulate matter and heavy metals of Kosovo: thermal power plant. J Int Environ Appl Sci 2008; 3: 280–7.

(41) Prathumratana L, Kim R, Kim KW. Heavy metal contamination of the mining and smelting district in Mitrovica, Kosovo. In: Proceedings of the International Symposia on Geoscience Resources and Environments of Asian Terranes, 4th IGCP and 5th APSEG. Bankok, 2008: 24–6.

(42) Thomas L. Coal geology: coal as substance. Chichester : John Wiley and Sons, 1992.

(43) Sandroni V, Clare M. Microwave digestion of sediments, soils, and urban particulate matter for trace metal analysis. Talanta 2003; 60: 715–23. https://doi.org/10.1016/S0039-9140(03)00131-0

(44) Shabani M, Muqaj B, SukaQ, Frangu S. Genetic zone Sharr Mountains (Kosovo). In: Conference Proceedings of the International Multidisciplinary Scientific Geo Conference. Albena : SGEM, 2011: 367–74. doi:10.5593/SGEM2011/S20.130.

(45) Levengood JM. Cd and Pb in tissues of mallards (Anasplatyrhynchos) and wood ducks (Aix sponsa) using the Illinois River (USA). Environ Pollut 2003; 122: 177–81. https://doi.org/10.1016/S0269-7491(02)00298-1

(46) Zhuang P, Zou B, Lu H, Li Z. Heavy metal concentrations in five tissues of chickens from a mining area. Pol J Environ Stud 2014; 23: 2375–9.

(47) DIN-32645. Chemical analysis: decision limit; detection limit and determination limit; estimation in case of repeatability, terms, methods, evaluation. Alabany : Engineering360, 1994.

(48) Jungsoo K, Tae-Hoe K. Heavy metal concentrations in feathers of Korean Shorebirds. Arch Environ Contam Toxicol 2008; 55: 122–8. doi:10.1007/s00244-007-9089-y.

(49) Emmanuel TT. Appraisal of Pb in the organs and tissues of domestic chicken (Gallus gallus domesticus) in Ibadan. Int J Pure Appl Zool 2016; 4: 225–34.

(50) Salwa AA, Shuhaimi-Othman M, Babji A. Assessment of trace metals contents in chicken (Gallus gallus domesticus) and quail (Coturnixcoturnix japonica) tissues from Selangor (Malaysia). Int J Environ Sci Technol 2012; 5: 441–51.

(51) DauweT, Lieven B, Ellen J, Rianne P, Ronny B, Marcel E. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol Indic 2002; 1: 227–34. https://doi.org/10.1016/S1470-160X(02)00008-0

(52) Meehan Sh, Mailman N. Kosovo: lead pollution requires immediate evacuation of Roma camps. London : MAC, Mines and Communities, 2005. http://www.minesandcommunities.org/article.php?a=1856!worddav4088f0b052636cb015f2ea09cfccf7b9.png|height=7,width=7! (junij 2019)

(53) Kutllovci-Zogaj D, Krasniqi S, Elezaj I, et al. Correlation between blood lead level and hemoglobin level in Mitrovica children. Med Arch 2014; 68: 324–8. doi:10.5455/medarh.2014.68.324-328.

(54) Straskraba V, Moran RE. Environmental occurrence and impacts of arsenic at gold mining sites in the western United States. Mine Water Environ 1999; 9: 181–91. doi:10.1007/BF02503691.

(55) Janssens E, Dauwe T, Bervoets L, Eens M. Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ Toxicol Chem 200; 20: 2815–20. doi:10.1002/etc.5620201221.

(56) Abdullah M, Fasola M, Muhammad A, et al. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere 2015; 119: 553–61. doi:10.1016/j.chemosphere.2014.06.068.

(57) Stafilov T, Aliu M, Sajn R. Arsenic in surface soils affected by mining and metallurgical processing in K. Mitrovica region, Kosovo. Int J Environ Res Public Health 2010; 7: 4050–61. doi: 10.3390/ijerph7114050.

(58) Walter GS. The chromium resources of Albania. Int Geol Rev 1994; 36: 785–95. http://dx.doi.org/10.1080/00206819409465488

(59) Göler D, Bickert M, Doka D. Kromiçanbllokadën - Albanian chromium mining revisited. Die Erde 2015; 146: 271–8. doi:10.12854/erde-146-17.

(60) Rizaj M, Beqiri E, McBow I, O’Brien EZ, Kongoli F. The mineral base and productive capacities of metals and non-metals of Kosovo. JOM 2008; 60: 18–22. doi 10.1007/s11837-008-0101-4.

(61) Hui CA. Concentrations of chromium, manganese, and lead in air and in avian eggs. Environ Pollut 2002; 120: 201–6. https://doi.org/10.1016/S0269-7491(02)00158-6

(62) Honda K, Min B, Tatsukawa R. Distribution of heavy metals, and age-related changes in the eastern great whit egret, Egret alba modesta, in the Korea. Arch Environ Contam Toxicol 1986; 15: 185–97. doi:10.1007/BF01059967.

(63) Metcheva R, Yurukova L, Teodorova SE. Biogenic and toxic elements in feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environ Monit Assess 2011; 182: 571–85. doi:10.1007/s10661-011-1898-9.

(64) Komarincki GJ. Tissue, sex and age specific accumulation of heavy metals (Zn, Cu, Pb, Cd) by populations of the mole (Talpa europaea L.) in a central urban area. Chemosphere 2000; 41(10): 1593–602. https://doi.org/10.1016/S0045-6535(00)00018-7

(65) Zogaj M, Düring RA. Plant uptake of metals, transfer factors and prediction model for two contaminated regions of Kosovo. J Plant Nutr Soil Sci 2016; 179: 630–40. doi:10.1002/jpln.201600022.

(66) Frassinetti S, Bronzetti G, CaltavuturoL, Cini M, Croce CD. The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 2006; 25: 596–610. doi:10.1615/JEnvironPatholToxicolOncol.v25.i3.40.

(67) Singh A, Ward OP. Biodegradation and bioremediation. Berlin : Springer, 2004. (Soil biology series, Vol. 2)

(68) Kitchin KT, Wallace K. Arsenite binding to synthetic peptides: the effect of increasing length between two cysteines. J Biochem Mol Toxicol 2006; 20: 35–8. doi:10.1002/jbt.20112.

(69) Zhao L,Chen S, Jia L, Shu S, Zhu P, Liu Y. Selectivity of arsenite interaction with zinc finger proteins. Metallomics 2012; 4: 988–94. doi:10.1039/c2mt20090b.

(70) Chang YY, KuoTC, Hsu CH, Hou DR, Kao YH, Huang RN. Characterization of the role of protein-cysteine residues in the binding with sodium arsenite. Arch Toxicol 2012; 86: 911–22. doi:10.1007/s00204-012-0828-0.

(71) Ferati F, Kerolli-Mustafa M, Kraja-Ylli A. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environ Monit Assess 2015; 187: 338. doi: 10.1007/s10661-015-4524-4.




DOI: http://dx.doi.org/10.26873/SVR-553-2019

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si