• Katerina Jazbec Blood Transfusion centre of Slovenia
  • Mojca Jež Blood Transfusion centre of Slovenia
  • Mojca Justin Blood Transfusion centre of Slovenia
  • Primož Rožman Blood Transfusion centre of Slovenia



The aging of multicellular organisms is a complex process, which is a result of various mutually complementary causes. One of these causes is the aging of stem cells. The biological function of stem cells is the replacement of cells that are lost due to illness, injury or normal fluctuations in the maintenance of tissue homeostasis. Molecular mechanisms involved in stem cell aging are similar to those involved in the aging of somatic cells. They include DNA damage and mutations, cell senescence, stem cell exhaustion, telomere shortening, epigenetic changes (alterations of histones and DNA and the consequent dysregulation of gene expression), changes in microRNAs, changes in metabolism, nutrient sensing, decline in mitochondrial integrity and biogenesis, alterations in microenvironment, accumulation of paracrine factors, and loss of cell polarity and proteostasis. Stem cells have developed special mechanisms that compensate for age-related accumulations of errors and they manage to maintain their stemness for a long time, however, they are able to keep cells in a good condition only for a limited period. This article describes the various mechanisms of stem cell aging and their consequences.

Key words: stem cell; aging; nutrient sensing; niche


Povzetek: Staranje večceličnih organizmov je kompleksen proces, ki je posledica različnih, med seboj dopolnjujočih se vzrokov. Eden od teh je tudi staranje matičnih celic, katerih biološka funkcija je nadomeščanje celic, ki propadejo zaradi bolezni, poškodb ali normalnega obnavljanja pri ohranjanju homeostaze tkiv. Molekularni mehanizmi, ki so vpleteni v staranje matičnih celic, so podobni kot pri staranju telesnih celic. Vključujejo poškodbe DNK in mutacije, celično senescenco, izčrpavanje zalog matičnih celic, krajšanje telomer, epigenetske spremembe (spremembe histonov in DNKA ter posledično spremenjeno izražanje genov), spremembe v mikroRNK, spremembe v zaznavanju hranil in presnovi, zmanjšano število mitohondrijev in njihovo oslabljeno funkcijo, spremembe v mikrookolju in kopičenje različnih parakrinih dejavnikov ter izgubo celične polarnosti in proteostaze. Matične celice so razvile posebne mehanizme, s katerimi kompenzirajo s staranjem povezano kopičenje napak in ohranjajo svojo matičnost, vendar jih ti mehanizmi v dobri kondiciji lahko ohranjajo le določen čas. V članku opisujemo različne mehanizme staranja matičnih celic in njihove posledice.

Ključne besede: matične celice; staranje; hranilna snov; zaznavanje; niša


(1) Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013; 153: 1194–217.

(2) Rozman JZ, Perme MP, Jez M, et al. The effect of CD34+ cell telomere length and hTERT expression on the outcome of autologous CD34+ cell transplantation in patients with chronic heart failure. Mech Ageing Dev 2017; 166: 42–7.

(3) Ahmed AS, Sheng MH, Wasnik S, et al. Effect of aging on stem cells. World J Exp Med 2017; 7: 1–10.

(4) Holstege H, Pfeiffer W, Sie D, et al. Somatic mutations found in the healthy blood compartment of a 115-year-old woman demonstrate oligoclonal hematopoiesis. Genome Res 2014; 24: 733–42.

(5) Mandraffino G, Aragona CO, Basile G, et al. CD34+ cell count predicts long lasting life in the oldest old. Mech Ageing Dev 2017; 164: 139–45.

(6) Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 2016; 143: 3–14.

(7) Burkhalter MD, Rudolph KL, Sperka T. Genome instability of ageing stem cells-induction and defence mechanisms. Ageing Res Rev 2015; 23: 29–36.

(8) Flores I, Canela A, Vera E, et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 2008; 22: 654–67.

(9) Ju Z, Jiang H, Jaworski M, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 2007; 13: 742–7.

(10) Sun D, Luo M, Jeong M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014; 14: 673–88.

(11) Gangaraju VK and Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009; 10(2):116–25.

(12) Srivastava S. The Mitochondrial basis of aging and age-related disorders. Genes (Basel) 2017; 19: 8(12).

(13) Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005; 309: 481–4.

(14) Kang E, Wang X, Tippner-Hedges R, et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 2016; 18(5):625–36.

(15) Doonan R, McElwee JJ, Matthijssens F, et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 2008; 22: 3236–41.

(16) Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response 2014; 12: 288–341.

(17) Sevini F, Giuliani C, Vianello D, et al. mtDNA mutations in human aging and longevity: controversies and new perspectives opened by high-throughput technologies. Exp Gerontol 2014; 56: 234–44.

(18) Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110: 3056–63.

(19) Jez M, Rozman P, Ivanovic Z, et al. Concise review: the role of oxygen in hematopoietic stem cell physiology. J Cell Physiol 2015; 230: 1999–2005.

(20) Aunan JR, Watson MM, Hagland HR, et al. Molecular and biological hallmarks of ageing. Br J Surg 2016; 103: e29–46.

(21) Houtkooper RH, Williams W, Auwerx J. Metabolic networks of longevity. Cell 2010; 142: 9–14.

(22) Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature 2013; 493: 338–45.

(23) Harrison DE, Strong ZD, Sharp JF, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460: 392–5.

(24) Alers S, Loffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012; 32: 2–11.

(25) Chen J, Astle CM, Harrison DE. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol 2003; 31: 1097–103.

(26) Mair W, McLeod CJ, Wang L, et al. Dietary restriction enhances germline stem cell maintenance. Aging Cell 2010; 9: 916–8.

(27) Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans. Science 2010; 328: 321–6.

(28) Stenderup K, Justesen J, Clausen C, et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33: 919–26.

(29) Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009; 460: 259–63.

(30) Guerra DA, Paiva AE, Sena IFG, et al. Adipocytes role in the bone marrow niche. Cytometry A 2018; 93(2):167–71.

(31) Woolthuis CM, de Haan G, Huls G. Aging of hematopoietic stem cells: intrinsic changes or micro-environmental effects? Curr Opin Immunol 2011; 23: 512–7.

(32) Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 2005;106: 1479–87.

(33) Rossi DJ, Bryder D, Zahn JM, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 2005; 102: 9194–9.

(34) Li F, Jin F, Freitas A, et al. Impaired regeneration of the peripheral B cell repertoire from bone marrow following lymphopenia in old mice. Eur J Immunol 2001; 31: 500–5.

(35) Guidi N, Sacma M, Standker L, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J 2017; 36: 1463.

(36) Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005; 433: 760–4.

(37) Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011; 477: 90–4.

(38) Lavasani M, Robinson AR, Lu A, et al. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun 2012; 3: e608.

(39) Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 2011; 10: 205–15.

(40) Powers ET, Morimoto RI, Dillin A, et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78: 959–91.

(41) Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011; 146: 682–95.

(42) Tomaru U, Takahashi S, Ishizu A, et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol 2012; 180: 963–72.

(43) Moore DL and Jessberger S. Creating age asymmetry: consequences of inheriting damaged goods in mammalian cells. Trends Cell Biol 2017; 27: 82–92.

(44) Florian MC, Nattamai KJ, Dorr K, et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 2013; 503: 392–6.

(45) Salemi S, Yousefi S, Constantinescu MA, et al. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 2012; 22: 432–5.

(46) Vilchez D, Simic MS, Dillin A. Proteostasis and aging of stem cells. Trends Cell Biol 2014; 24: 161–70.

(47) Sharpless NE, Depinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004; 113: 160–8.




How to Cite




Review Article