EFFECTS OF HUMIC ACIDS ON POULTRY UNDER STRESS CONDITIONS

Janka Vaskova, Peter Patlevič, Daniel Žatko, Slavomír Marcinčák, Ladislav Vaško, Klára Krempaská, Jozef Nagy

Abstract


The transportation of chickens from the poultry farm to the slaughterhouse causes stress conditions that influence the oxidative status of the whole organism and subsequently change the organoleptic properties of the meat delivered to the consumer. The aim of this work was to investigate how administering 0.6% humic acids to broiler chickens for a period of 42 days affects the level of selected enzymes directly involved in oxidative stress elimination. For the most objective estimation of the oxidative state, parameters were determined in liver and kidney mitochondria, and in the blood plasma. With regards to the chelating properties of humic acids, our interest was in monitoring the effects on the distribution of the transition metals Fe, Zn, Cu, Mn, which serve as cofactors of antioxidant enzymes. We have found that, under normal conditions, 42 days of humic acid administration do not cause significant metal redistribution. It has a significant effect on Se excretion, according to the pronounced deposition of Se in kidney tissue, without significantly increased activity of the corresponding enzyme. This led to compensation by changes in other antioxidant enzyme activities. This is a noteworthy finding, especially after administration of longer than 42 days. In conditions caused by sudden stress, according to the detected element levels, it is possible to expect a better response in the case of humic acid administration. The effect of humic acid supplementation appeared to be organ-specific and may ultimately be beneficial for the chickens' health, stress elimination and, finally, the quality of the meat.

Key words: antioxidant enzymes; humic acids; chicken; metal cofactors; oxidative stress

 

UČINKI HUMINSKE KISLINE NA PERUTNINO V STRESNIH POGOJIH

Povzetek: Prevoz piščancev s perutninske farme v klavnico povzroča stresne razmere, ki vplivajo na oksidativni status celotnega organizma in kasneje spremenijo organoleptične lastnosti mesa, dostavljenega potrošniku. Cilj raziskave je bil proučiti, ali dodajanje 0,6 % huminske kisline v hrano pitovnim piščancem za 42 dni vpliva na aktivnost nekaterih encimov, ki so neposredno vključeni v urejanje in zmanjševanje oksidativnega stresa. Za objektivno ocenjevanje oksidativnega stanja so se določevali parametri v jetrnih in ledvičnih mitohondrijih ter v krvni plazmi. Kelacijske lastnosti huminske kisline so bile proučevane s spremljanjem učinkov na porazdelitev prehodnih kovin Fe, Zn, Cu, Mn, ki služijo kot kofaktorji antioksidantnih encimov. Ugotovili so, da v normalnih pogojih 42-dnevno dodajanje huminske kisline ne povzroči bistvene prerazporeditve kovin. Dodajanje pa pomembno vpliva na izločanje Se glede na izrazito usedlino Se v tkivu ledvic, brez bistveno povečane aktivnosti ustreznega encima. To je privedlo do sprememb, ki so nadomestile aktivnosti drugih antioksidantnih encimov. To je pomembna ugotovitev, še posebej pri dodajanjih več kot 42 dni. V pogojih, ki jih povzroča nenadni stres, je glede na ugotovljene ravni elementov mogoče pričakovati boljši odziv pri uporabi huminske kisline. Učinek dopolnjevanja s huminsko kislino se je izkazal za organsko-specifičnega in je lahko koristen za zdravje piščancev, odpravo stresa in končno kakovost mesa.

Ključne besede: antioksidativni encimi; humične kisline; piščanec; kovinski kofaktorji; oksidativni stres


Full Text:

PDF

References


(1) Nijda E, Arens P, Lambooij E, et al. Factors influencing bruise and mortality of broilers during catching, transport and lairage. Poultry Sci 2004; 83: 1610–5.

(2) Oba A, de Almeida M, Pinhero JW, et al. The effect of management of transport and lairage conditions on broiler chicken breast meat quality and DOA (Death on Arrival). Braz Arch Biol Technol 2011; 52: 205–11.

(3) Lengkey HAW, Siwi JA, Edianingsih P, et al. The effects of transportation on broiler meat pH and tenderness. Biotech Anim Husbandry 2013; 29: 331–6.

(4) Zhu Z, Chen Y, Huang Z, et al. Effects of transport stress and rest before slaughter on blood parameters and meat quality of ducks. Can J Anim Sci 2014; 94: 595–600.

(5) Doktor J, Połtowicz K. Effect of transport to the slaughterhouse on stress indicators and meat quality of broiler chickens. Ann Anim Sci 2009; 9: 307–17.

(6) Southern KJ, Rasekh JG, Hemphill FE, et al. Conditions of transfer and quality of food. Rev Sci Tech 2006; 25: 675–84.

(7) Fazio E, Ferlazzo A. Evaluation of stress during transport. Vet Res Commun 2003; 27: 519–24.

(8) Ranabir S, Reetu K. Stress and hormones. Indian J Endocrinol Metab 2011; 15: 18–22.

(9) Tan KH. Humic matter in soil and the environment: principles and cntroversies. New York : Marcel Dekker, 2003: 408.

(10) Skokanová M, Dercová K. Humínové kyseliny. Interakcie humínových kyselín s kontaminantami. Chem Listy 2008; 102: 338−45.

(11) Perminova IV, Hatfield K. Remediation chemistry of humic substances: theory and implications for technology. In: Perminova IV, ed. Use of humic substances to remediate polluted enviroments: from theory to practice. Dordrecht : Springer, 2005: 3−36.

(12) van Rensburg CE. The antiinflammatory properties of humic substances: a mini review. Phytother Res 2015; 29: 791−5.

(13) Vašková J, Veliká B, Pilátová M, et al. Effects of humic acids in vitro. In Vitro Cell Dev Biol Anim 2011; 47: 376−82.

(14) Fernández-Vizarra E, Ferrín G, Pérez-Martos A, et al. Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 2010; 10: 253−62.

(15) Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol 1985; 113: 484−90.

(16) Flohé L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984; 105: 114−21.

(17) Floreani M, Petrone M, Debetto P, et al. A comparison between different methods for the determination of reduced and oxidized glutathione in mammalian tissues. Free Radic Res 1997; 26: 449–55.

(18) Ozturk E, Coskun I, Ocak N, et al. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers. Br Poult Sci 2014; 55: 668–74.

(19) Ozturk E, Ocak N, Turan A, et al. Performance, carcass, gastrointestinal tract and meat quality traits and selected blood parameters of broilers fed diets supplemented with humic substances. J Sci Food Agric 2012; 92: 59–65.

(20) Nagaraju R, Reddy BS, Gloridoss R, et al. Effect of dietary supplementation of humic acids on performance of broilers. Indian J Anim Sci 2014; 84: 447–52.

(21) Cetin E, Berrin KG, Nazmi C. Effect of dietary humate and organic acid supplementation on social stress induced by high stocking density in laying hens. J Anim Vet Adv 2011; 10: 2402–7.

(22) Fejerčáková A, Vašková J, Bača M, et al. Effect of dietary microbially produced gamma-linolenic acid and plant extracts on enzymatic and non-enzymatic antioxidants in various broiler chicken organs. J Anim Physiol Anim Nutr 2014; 98: 860–6.

(23) Perry JJ, Shin DS, Getzoff ED, et al. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 2010; 1804: 245–62.

(24) Miriyala S, Spasojevic I, Tovmasyan A, et al. Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta 2012; 1822: 794–814.

(25) Mezes M, Erdelyi M, Balogh K. Deposition of organic trace metal complexes as feed additives in farm animals. Eur Chem Bull C 2012; 1: 410–3.

(26) Herzig I, Navrátilová M, Totušek J, et al. The effect of humic acid on zinc accumulation in chicken broiler tissues. Czech J Anim Sci 2009; 54: 121–7.

(27) Islam KM, Schuhmacher SA, Gropp MJ. Humic acid substances in animal agriculture. Pakistan J Nutr 2005; 4: 126–34.

(28) Brown NM, Torres AS, Doan PE, et al. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Proc Natl Acad Sci U S A 2004; 101: 5518–23.

(29) Culotta VC, Yang M, O'Halloran TV. Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 2006; 1763: 747–58.

(30) Furukawa Y, Torres AS, O'Halloran TV. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 2004; 23: 2872–81.

(31) Luk E, Yang M, Jensen LT, et al. Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J Biol Chem 2005; 280: 22715–20.

(32) Bera S, Weinberg F, Ekoue DN, et al. Natural allelic variations in glutathione peroxidase-1 affect its subcellular localization and function. Cancer Res 2014; 74: 5118–26.

(33) Farooq U, Xiong G, Irshad R, et al. Pattern of joints involvement in Kashin-Beck disease: a local osteochondropathy in China. Ayub Med Coll Abbottabad 2010; 22: 97–100.

(34) Avissar N, Ornt DB, Yagil Y, et al. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 1994; 226: C367–75.

(35) Lushckak V. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012; 2012 (Art. ID 736837): e1–2. https://www.hindawi.com/journals/jaa/2012/736837 (June 2017)

(36) Wang W, Ballatori N. Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev 1998; 50: 335–56.

(37) DiDonato M, Sarkar B. Copper transport and its alterations in Menkes and Wilson diseases. Biochim Biophys Acta 1997; 1360: 3–16.

(38) Ipek H, Avci M, Iriadam M, et al. Effects of humic acid on some hematological parameters, total antioxidant capacity and laying performance in Japanese quails. Arch Geflügelkd 2008; 72: 56–60.




DOI: http://dx.doi.org/10.26873/SVR-469-2018

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si