SEROTYPE-SPECIFIC AND HAEMADSORPTION PROTEIN OF THE AFRICAN SWINE FEVER VIRUS

Alexey D. Sereda, Anna S. Kazakova, Ilnaz R. Imatdinov, Denis V. Kolbasov

Abstract


This review presents comparative results of simultaneously conducted studies on proteins responsible for the haemadsorption and serotype-specific properties of African swine fever virus (ASFV). An ASFV gene EP402R (or LMW8-DR) encoding protein CD2v homologous to murine, human or porcine T-cell adhesive receptor was found. The CD2v was shown to be directly involved into a haemadsorption process, and expressed in ASFV-infected cells as a glycoprotein with a molecular weight of approximately 105-110 kDa. In the presence of a glycosylation inhibitor, tunicamycin, its molecular weight is about 42 kDa. In ASFV-infected cells labeled with 3H-glucosamine or 14C-sodium acetate, a virus-specific major glycoprotein with a molecular weight of 110-140 kDa (gp 110-140) was identified using radioimmunoprecipitation assay. Using ASFV reference strains belonging to seroimmunotypes I-IV and the corresponding antisera active in haemadsorption inhibition assay (HADIA), we determined that gp 110-140 defines the serotype specificity. Genotyping on the basis of the genetic locus encoding the CD2v and a C-type lectin protein also showed a concurrence with the grouping of ASFV isolates and strains based on their seroimmunotypes. Immunization of pigs with the gp 110-140 within liposomes, or a recombinant haemagglutinin (CD2v) protected 67 to 100% of animals from death due to their subsequent infection with homologous virulent ASFV strains. Based on the physico-chemical and biological characteristics of the gp 110-140 and CD2v it is suggested that they are one and the same virus-specific glycoprotein crucial for induction of the immunological protection against ASF.

Key words: ASFV; seroimmunotypes; serotype; glycoproteins; gp 110-140; CD2v; protectivity

 

SEROTIPNO-SPECIFIÄŒEN IN HEMADSORPCIJSKI PROTEIN VIRUSA AFRIÅ KE PRAÅ IÄŒJE KUGE A.D

Povzetek: Pregledni Älanek predstavlja primerjavo rezultatov soÄasno izvedenih raziskav o beljakovinah, ki so pomembne za hemadsorpcijo in serotipno specifiÄne lastnosti virusa afriÅ¡ke praÅ¡iÄje kuge (ASFV; iz angl. african swine fever virus). Pri virusu ASFV je bil odkrit gen EP402R (imenovan tudi LMW8-DR), ki kodira beljakovino CD2v, ki je homologna glodavskemu, ÄloveÅ¡kemu in praÅ¡iÄjemu T-celiÄnemu adhezivnemu receptorju. Pokazalo se je, da je CD2v neposredno vpletena v proces hemadsorpcije in je izražena v celicah, okuženih z ASFV kot glikoprotein z molekulsko maso okrog 105-110 kDa. V prisotnosti zaviralca glikozilacije tunicamicina je njegova molekulska masa približno 42 kDa. V celicah, okuženih z ASFV, oznaÄenih s 3H-glukozaminom ali 14C-natrijevim acetatom, je bil s testom radioimunoprecipitacije ugotovljen virusno specifiÄni osrednji glikoprotein z molekulsko maso 110-140 kDa (gp 110-140). Z uporabo referenÄnih sevov ASFV, ki pripadajo seroimunotipom I-IV, in ustreznim antiserumom, ki so bili aktivni pri preizkusu zaviranja hemadsorpcije (HADIA), smo ugotovili, da gp 110-140 doloÄa specifiÄnost serotipa. Genotipizacija na osnovi genskega lokusa, ki kodira CD2v in C-tip lektinske beljakovine, je pokazala soizražanje s skupino izolatov in sevov ASFV na podlagi njihovih seroimunotipov. Imunizacija praÅ¡iÄev z gp 110-140 v liposomih ali z rekombinantnim hemaglutininom (CD2v) je zaÅ¡Äitila od 67 do 100 odstotkov živali pred smrtjo zaradi njihove naknadne okužbe z virulentnimi sevi ASFV. Na podlagi fizikalno-kemiÄnih in bioloÅ¡kih znaÄilnosti beljakovin gp 110-140 in CD2v menimo, da gre za isti virusni glikoprotein, ki je kljuÄnega pomena za vzpodbuditev imunoloÅ¡ke zaÅ¡Äite pred ASF.

KljuÄne besede: ASFV; seroimunotipi; serotip; glikoproteini; gp 110-140; CD2v; zaÅ¡Äita

 


Full Text:

PDF

References


(1) Dixon LK, Alonso C, Escribano JM, et al. Asfarviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, eds. Virus taxonomy. Classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses (ICTV). Oxford: Elsevier, 2011: 153–62.

(2) Sanchez-Vizcaino JM, Arias M. African swine fever virus. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, eds. Diseases of swine. 10th ed, Ames: Wiley-Blackwell, 2012: 396–404.

(3) Malmquist WA, Hay D. Hemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res 1960; 21: 104–8.

(4) Hess WR, De Tray DE. The use of leukocyte cultures for diagnosing African swine fever (ASF). Bull Epizoot Dis Afr 1960; 8: 317–20.

(5) Enjuanes L, Carrascosa AL, Moreno MA, Vinuela E. Titration of African swine fever (ASF) virus. J Gen Virol 1976; 32: 471–7.

(6) Sereda AD, Balyshev VM, Morgunov YP, Kolbasov DV. Ðntigenic characteristics of African swine fever virus in artificial and natural mixed populations [in Russian]. Sel'skokhozyaistvennaya biologiya [Agric Biol] 2014; 4: 64–9.

(7) Malmquist WA. Serologic and immunologic studies with African swine fever virus. Am J Vet Res 1963; 24: 450–9.

(8) Lucas A, Haag J, Larenaudie B. La peste porcine africane. Collection monographique. Paris: Expansion scientifique française, 1967.

(9) Sanchez-Botija C, Ordas A. Laboratory manual for diagnosis of african swine fever. Madrid: Instituto Nacional de Investigaciones Agrarias, 1977: 133–6.

(10) Vigario JD, Terrinha AM, Bastos AL, Moura Nunes JF, Marques D, Silva JF. Serological behaviour of isolated African swine fever virus: brief report. Arch Gesamte Virusforsch 1970; 31: 387–9.

(11) Vishnyakov IF, Mitin NI, Karpov G, Kurinnov VV, Yashin A. Differentiation of African and classical swine fever viruses [in Russian]. Veterinariya 1991; 4: 28–31.

(12) Vishnyakov IF, Mitin NI, Petrov YI, et al. Seroimmunological classification of natural African swine fever virus isolates [in Russian]. Actual’nye voprosy veterinarnoi virusologii: mater. nauchn.- prakt. konf. VNIIVViM “Klassicheskaya chuma svinei – neotlozhnye problemy, nauki I praktiki†(Current Problems of Veterinary Virology: Proc Sci Pract Conf VNIIVViM “Classical Swine Fever – Pressing Problems of Science and Practiceâ€). Pokrov, 1995: 141–3.

(13) Balyshev VM, Kalantaenko YF, Bolgova MV, Prudnikova EY. Seroimmunological affiliation of African swine fever virus isolated in the Russian Federation. Russ Agric Sci 2011; 37: 427–9.

(14) Sereda AD, Balyshev VM. Antigenic diversity of African swine fever viruses [in Russian]. Vopr Virusol 2011; 56: 38-42.

(15) Balyshev VM, Bolgova MV, Balysheva VI, Knyazeva NV, Zhivoderov SP. Рreparation of standard haemadsorption-inhibiting reference sera against African swine fever virus [in Russian]. Voprosy normativno-pravovogo regulirovaniya v veterinarii 2015; 2: 23–5. https://rucont.ru/ efd/379353 (July 22, 2017).

(16) Bastos ADS, Penrith ML, Cruciere C, et al. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch Virol 2003; 148: 693–706.

(17) Achenbach JE, Gallardo C, Nieto-Pelegrin E, et al. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound Emerg Dis 2017; 64(5): 1393–404.

(18) Malogolovkin A, Burmakina G, Titov I, et al. Comparative analysis of African swine fever virus genotypes and serogroups. Emerg Infect Dis 2015; 21: 312–15.

(19) Rodriguez JM, Yanez RJ, Almazan F, Vinuela E, Rodriguez JF. African swine fever virus en codes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J Virol 1993; 67: 5312–20.

(20) Borca MV, Kutish GF, Afonso CL, et al. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology 1994; 199: 463–8.

(21) Borca MV, Carrillo C, Zsak L, et al. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol 1998; 72: 2881–9.

(22) Peterson A, Seed B. Monoclonal-antibody and ligand-binding sites of the T-cell erythrocyte receptor (CD2). Nature 1987; 329: 842–6.

(23) Goatley LC, Dixon LK. Processing and localisation of the African swine fever virus CD2v transmembrane protein. J Virol 2011; 85: 3294– 305.

(24) Ruiz-Gonzalvo F, Rodriguezv, Escribano JM. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 1996; 218: 285–9.

(25) Kay-Jackson PC, Goatley LC, Cox L, et al. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J Gen Virol 2004; 85: 119–30.

(26) Sereda AD, Makarov VV. Identification of isolate-specific glycopolypeptide of African swine fever virus [in Russian]. Veterinariya 1992; 1: 22–4.

(27) Sereda AD, Anokhina EG, Fugina LG, Makarov VV. Serological and physical-chemical properties of gp 110-140 of African swine fever virus [in Russian]. Veterinariya 1993; 1: 26–8.

(28) Sereda AD, Anokhina EG, Makarov VV. Glycoproteins from the African swine fever virus [in Russian]. Vopr Virusol 1994; 39: 278–81.

(29) Sereda AD. Quantitative determination of the antigenic relatedness of haemadsorbing ASFV strains [in Russian]. Veterinariya 2011; 6: 26–8.

(30) Tulman ER, Delhon GA, Ku BK, Rock DL. African swine fever virus. Curr Top Microbiol Immunol 2009; 328: 43–87.

(31) Chapman DA, Tcherepanov V, Upton C, Dixon LK. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 2008; 89: 397– 408.

(32) Makarov VV, Sereda AD, Piria AA, Malakhova MS. The functional role of the glycosylation of viral components [in Russian]. Vopr Virusol 1992; 37: 267–70.

(33) Mebus CA, Dardiri AH. Western hemisphere isolates of African swine fever virus: asymptomatic carriers and resistance to challenge inoculation. Am J Vet Res 1980; 41: 1867–9.

(34) Ruiz-Gonzalvo F, Carnero E, Bruvel V. Immunological responses of pigs to partially attenuated African swine fever virus and their resistance to virulent homologous and heterologous viruses. In: Wilkinson PJ, eds. Proceedings of CEC/FAO Research Seminar, Sardinia. ASF, EUR 8466 EN. Luxembourg: Commission of the European Communities, 1983: 2066–216.

(35) Hamdy FM, Dardiri AH. Clinic and immunologic responses of pigs to African swine virus isolated from the Western hemisphere. Am J Vet Res 1984; 45: 711–4.

(36) Kolbasov DV, Balyshev VM, Sereda AD. Results of research works on the development of live vaccines against African swine fever [in Russian]. Veterinariya 2014; 8: 3–8.

(37) Lacasta A, Monteagudo PL, Jiménez-Marín Ã, et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Vet Res 2015; 46: 135 (1–16). https://veterinaryresearch.biomedcentral.com/track/pdf/10.1186/ s13567-015-0275-z (July 22, 2017)

(38) Makarov VV, Perzashkevich VS, Sereda AD, Vlasov NA, Kadetov VV. Immunological estimation algorithm of protective potential of viral components. [Study of preparations of purified inactivated African swine fever virus] [in Russian]. Vestnik Rossiiskoi Akademii Sel'skokhozyaistvennykh Nauk 1995; 6: 60–2.

(39) Sereda AD. Immunogenic and protective characteristics of African swine fever virus glycoproteins [in Russian]. Actual’nye Voprosy Veterinarnoi Biologii 2013; 4: 31–5.

(40) Ruiz-Gonzalvo F, Coll JM. Characterization of a soluble hemagglutinin induced in African swine fever virus-infected cells. Virology 1993; 196: 769–77.

(41) Argilaguet JM, Perez-Martin E, Nofrarias M, et al. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE 2012; 7(9): e40942 (1–11).

(42) Argilaguet JM, Perez-Martin E, Lopez S, et al. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res 2013; 98: 61–5.

(43) Garcia-Barreno B, Sanz A, Nogal ML, Vinuela E, Enjuanes L. Monoclonal antibodies of Afri can swine fever virus: antigenic differences among field virus isolates and viruses passaged in cell culture. J Virol 1986; 58: 385–92.

(44) Wesley RD, Tuthill AE. Genome relatedness among African swine fever field isolates by restriction endonuclease analysis. Prev Vet Med 1984; 2: 53–62.

(45) Dixon LK, Wilkinson PJ. Genetic diversity of African swine fever virus isolates from soft ticks (Ornithodoros moubata) inhabiting burrows in Zambia. J Gen Virol 1988; 69: 2981–93.

(46) Sumption KJ, Hutchings GH, Wilkinson PJ, Dixon LK. Variable regions on the genome of the Malawi isolate of African swine fever virus. J Gen Virol 1990; 71: 2331–40.

(47) Ekue NF, Wilkinson PJ. Comparison of genomes of African swine fever virus isolates from Cameroon, other African countries and Europe. Rev Elev Med Vet Pays Trop 2000; 53: 229–36.

(48) Selyaninov JO, Balyshev VM, Tsybanov SZ. African swine fever virus: physical mapping of the genome of the strains [in Russian]. Vestnik Rossiiskoi Akademii Sel'skokhozyaistvennykh Nauk 2000; 5: 75–6.

(49) Lubisi BA, Bastos AD, Dwarka RM, Vosloo W. Molecular epidemiology of African swine fever in East Africa. Arch Virol 2005; 150: 2439–52.

(50) Boshoff CI, Bastos AD, Gerber LJ, Vosloo W. Genetic characterisation of African swine fever viruses from outbreaks in southern Africa (1973– 1999). Vet Microbiol 2007; 121: 45–55.

(51) Nix RJ, Gallardo C, Hutchings G, Blanco E, Dixon LK. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch Virol 2006; 151: 2475–94.

(52) Chapman DA, Darby AC, Da Silva M, Upton C, Radford AD, Dixon LK. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg Infect Dis 2011; 17: 599–605.

(53) Malogolovkin A, Burmakina G, Tulman MS, et al. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. J Gen Virol 2015; 96: 866–73.




DOI: https://doi.org/10.26873/SVR-454-2018

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Our journal is indexed in:
Science Citation Index Expanded, Journal Citation Reports/Science Edition, Agris, Biomedicina Slovenica, CAB Abstracts, IVSI Urlich’s International Periodicals Directory
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si