ANTIMICROBIAL ACTIVITY AND ENZYMES ON SKIN MUCUS FROM MALE AND FEMALE CASPIAN KUTUM (Rutilus frisii kutum Kamensky, 1901) SPECIMENS

Milad Adel, Reza Safari, Siyavash Soltanian, Mohammad Jalil Zorriehzahra, Maria Ángeles Esteban

Abstract


The mucus layer covering the surface of fish contain a high number of antimicrobial compounds that provide a first line of defense against aquatic pathogens. In the present study, bactericidal activity present on skin mucus of Caspian kutum (Rutilus frisii kutum) broodstock was tested against six pathogenic bacterial strains (Streptococcus iniae, Yersinia ruckeri, Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa and Escherichia coli). Furthermore, fungicidal activity was assessed against four pathogenic fungi (Saprolegnia sp., Fusarium solani, Candida albicans and Aspergillus flavus). Maximum and minimum antibacterial activity was observed against Y. ruckeri and S. iniae, respectively, while maximum and minimun fungicidal activty was detected against F. solani and C. albicans, respectively. Curiously, antimicrobial activity was higher in the fish mucus of female than male against most tested strains. In addition, minimum inhibitory concentration test showed that minimum concentrations of mucus ranged between 125 to 500 μg/L were able to inhibit the growth of the selected bacterial and fungal pathogens. Alkaline phosphatase, lysozyme, protease and esterase activities were also studied on mucus samples being the observed activities very similar between both sexes, although higher lysozyme activity was detected in the mucus of female fish in comparison to the values recorded on male samples. Skin mucus of this fish species (especially females) could be a potential source of newer and more effective antibacterial components.

Key words: Rutilus frisii kutum; skin mucus; bactericidal activity; antifungal activity; fish

 

PROTIBAKTERIJSKA AKTIVNOST IN ENCIMI V VZORCIH SLUZI KOŽE SAMCEV IN SAMIC KASPIJSKEGA KUTUMA (Rutilus frisii kutum Kamensky, 1901)

Povzetek: Sloj sluzi, ki pokriva površino rib, vsebuje veliko količino protimikrobnih spojin, ki zagotavljajo prvo obrambo pred škodljivimi mikroorganizmi v vodi. V študiji je bila testirana baktericidna aktivnost sluzi s površine kože kaspijskega kutuma (Rutilus frisii kutum) na šestih patogenih bakterijskih sevih (Streptococcus iniae, Yersinia ruckeri, Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa in Escherichia coli). Ocenjena je bila tudi fungicidna aktivnost proti štirim patogenem vrstam gliv (Saprolegnia sp., Fusarium solani, Candida albicans in Aspergillus flavus). Največja in najmanjša protibakterijska aktivnost je bila opažena proti Y. ruckeri in S. iniae, medtem ko je bila pri F. solani in C. albicans odkrita največja in najmanjša fungicidna aktivnost. Zanimivo je, da je bila protimikrobna aktivnost višja pri sluzi samic kot pri sluzi samcev. Minimalni zaviralni preizkus koncentracije je pokazal, da so najmanjše koncentracije sluzi, ki so zavirale rast izbranih bakterijskih in glivičnih patogenov med 125 do 500 μg/L. V vzorcih sluzi so bili proučevani tudi aktivnosti alkalne fosfataze, lizocima, proteaz in esteraz. Pri večini meritev ni bilo razlik med spoloma, le pri aktivnosti lizocima je bila ta aktivnost višja v sluzi samic v primerjavi z vrednostmi, izmerjenimi v vzorcih samcev. Kožna sluznica te vrste rib (zlasti samic) bi lahko bil potencialni vir novih in učinkovitejših antibakterijskih sredstev.

Ključne besede: Rutilus frisii kutum; kožna sluznica; baktericidna aktivnost; proti glivično delovanje; ribe


Full Text:

PDF

References


(1) Kanno T, Naka T, Muroga K. Mode oftransmission of vibriosis among ayu Plecoglossus altivelis. J Aquat Anim Health 1989; 1: 2–6.

(2) Austin B, McIntosh D. Natural antibacterial compounds on the surface of rainbow trout, Salmo gairdneri Richardson. J Fish Dis 1988; 11: 275–7.

(3) Balasubramanian S, Gunasekaran G, Baby Rani P, Arul Prakash A, Prakash M, Senthil Raja JAP. A study on the antifungal properties of skin mucus from selected fresh water fishes. Golden Res Thought 2013; 2: 23–9.

(4) Ghafoori Z, Heidari B, Farzadfar F, Aghamaali M. Variations of serum and mucus lysozyme activity and total protein content in the male and female Caspian kutum (Rutilus frisii kutum, Kamensky 1901) during reproductive period. Fish Shellfish Immunol 2014; 37: 139–46.

(5) Lemaitre C, Orange N, Saglio P, Gagnonand Molle G. Characterization and ion channelof novel antibacterial proteins from the skin mucous of carp (Cyprinus carpio). Eur J Biochem 1996; 240: 123–49.

(6) Fouz B, Devesa S, Gravningen K, Barja JL, Toranzo AE. Antibacterial action of the mucus of turbot. Bull Eur Assoc Fish Pathol 1990; 10: 56–9.

(7) Iranian Fisheries Organization (IFO). Exploitation of sturgeon fish stock in 2015. Teheran : IFO, 2015: 25–8.

(8) Azarin H, Aramli MS, Imanpour MR, Rajabpour M. Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in Kutum (Rutilus frisii kutum) fry. Prob Antimicrob Protein 2015; 7: 31–7.

(9) Hoseinifar SH, Sharifian M, Vesaghi MJ, Khalili M, Esteban MÁ. The effects of dietary xylooligosaccharide on mucosal parameters, intestinal microbiota and morphology and growth performance of Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol 2014; 39: 231–6.

(10) Hoseinifar SH, Zoheiri F, Dadar M, Rufchaei R, Ringø E. Dietary galactooligosaccharide elicits positive effects on non-specific immune parameters and growth performance in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol 2016; 56: 467–72

(11) Hoseinifar SH, Zoheiri F, Caipang CM. Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol 2016; 55: 523–8

(12) Adel M, Abedian Amiri A, Zorriehzahra J, Nematolahi A, Esteban MÁ. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol 2015; 45:841–7.

(13) Guardiola FA, Cuesta A, Abellán E, Meseguer J, Esteban MA. Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish. Fish Shellfish Immunol 2014; 40: 24–31.

(14) Guardiola FA, Cuesta A, Arizcun M, Meseguer J, Esteban MA. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish Shellfish Immunol 2014; 36:545–51.

(15) Kesteven GL. Manual of field methods in fisheries biology. FAO Manuals in Fisheries Science No 1. Rome : FAO, 1960: 152.

(16) Subramanian US, Mackinnon SL, Ross NW. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol 2007; 148: 256–63.

(17) Wei OY, Xavier R, Marimuthu K. Screening of antibacterial activity of mucus extract of Snakehead fish, Channa striatus (Bloch). Eur Rev Med Pharmacol Sci 2010; 14: 675–81.

(18) Hellio C, Pons A, Beaupoil MC, Bourgougnon N, Legal Y. Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. Int J Antimicrob Agent 2002; 20: 214–19.

(19) Sanchooli O, Hajimoradloo A, Ghorbani R. Measurement of alkaline phosphatase and lysozyme enzymes in epidermal mucus of different weights of Cyprinus carpio.World J Fish Marine Sci 2012; 4: 521–4.

(20) Ellis AE. In: Stolen JS, Fletcher TC, Anderson DP, et al, eds. Lysozyme assay in techniques in fish immunology. Fair Haven, New Jersey : SOS Publications, 1990: 101–3.

(21) Sheikhzadeh N, Heidarieh M, Karimi Pashaki A, Nofouzi K, Ahrab Farshbafi M, Akbari M. Hilyses, fermented Saccharomyces cerevisiae, enhances the growth performance and skin non-specific immune parameters in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 2012; 32: 407–10.

(22) Noya M, Magarinos B, Toranzo AE, Lamas J. Sequential pathology of experimental pasteurellosis in gilthead seabream Sparus aurata a light microscopic and electron microscopic study. Dis Aquat Org 1995; 21: 177–86.

(23) Esteban MA. An overview of the immunological defenses in fish skin. ISRN Immunol 2012; 2012(ID 853470): e1–29. https://www.hindawi. com/journals/isrn/2012/853470 (June 2017)

(24) Kuppulakshmi C, Prakash M, Gunasekaran G, Manimegalai G, Sarojini S. Antibacterial properties of fish mucus from Channa punctatus and Cirrhinus mrigala. Eur Rev Med Pharmacol Sci 2008; 12: 149–53.

(25) Westerhoff HV, Juretic D, Hendler RW, Zasloff M. Magainins and the disruption of membrane- linked free-energy transduction. Proc Natl Acad Sci U S A 1989; 86: 6597–601.

(26) Yang JY, Shin SY, Lim SS, Hahm KS, Kim Y. Structure and bacterial cell selectivity of a fish derived antimicrobial peptide, pleurocidin. J Microbiol Biotechnol 2000; 16: 880–8.

(27) Kumari U, Nigam AK, Mittal S, Mittal AK. Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus. Eur Rev Med Pharmacol Sci 2011; 15: 781–6.

(28) Rodrigues E, Dobroff S, Taborda P, Travassos R. Antifungal and antitumor models of bioactive protective peptides. An Acad Bras Cienc 2009; 81: 503–20.

(29) Ikram NM, Ridzwan BH. A preliminary screening of antifungal activities from skin mucus extract of Malaysian local swamp eel (Monopterus albus). Int Res J Pharm Pharmacol 2010; 3(1): e1–8. https://www.interesjournals.org/articles/a-preliminary-screening-of-antifungal-activities-from-skin-mucus-extract-of-malaysian-local-swamp-eel-monopterus-albus.pdf (June 2017)

(30) Fast MD, Sims DE, Burka JF, Mustafa A, Ross NW. Skin morphology and humoral non specific defense parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comp Biochem Physiol 2002; 132: 645–57.

(31) Yano T. Non-specific immune system: humoral defense. In: Iwama G, Nakanishi T, eds. The fish immune system: organism, pathogen, and environment. San Diego : Academic Press, 1996: 106–59.

(32) Saurabh Sh, Sahoo P K. Lysozyme: an important defence molecule of fish innate immune system. Aquacult Res 2008; 39: 223–39.

(33) Schrock RM, Smith SD, Maule G, Doulos SK, Rockowski JJ. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring Chinook salmon (O. tshawytscha) early in the parr-smolt transformation. Aquaculture 2001; 198: 169–77.

(34) Balfry SK, Iwama GK. Observation on the inherent variability of measuring lysozyme activity in coho salmon (Oncorhynchus kisutch). Comp Biochem Physiol 2004; 138: 207–11.

(35) Caruso G, Denaro MG, Caruso R, Manchini F, Genovese L, Maricchiolo G. Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Mar Environmen Res 2011; 72: 46–52.




DOI: http://dx.doi.org/10.26873/SVR-440-2018

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si