EFFECTS OF SYNTHETIC AND ORGANIC ACARICIDES ON HONEY BEE HEALTH: A REVIEW
DOI:
https://doi.org/10.26873/SVR-422-2017Abstract
The honey bee is a crucial pollinator of agricultural crops and also an economically important producer of commodities such as honey and beeswax that find diverse uses in the food industry, cosmetics and medicine. At present, the ectoparasitic mite Varroa destructor is viewed as the most damaging pest of the honey bee worldwide. Without treatment, colonies generally collapse within a few years. To keep the population of the Varroa mites low, beekeepers relay on the use of synthetic and organic acaricides, the most popular commercially available ones include amitraz, coumaphos, flumethrin, fluvalinate, formic acid, oxalic acid and thymol. These conventional acaricides are cheap and easy to apply, but prolonged use causes Varroa mites to rapidly develop resistance and bee products can become contaminated. Residues of acaricides are present in high concentrations throughout the hive and bees are exposed to them all year around. The present review summarises the current knowledge of the deleterious effects of conventional acaricides on honey bee health. Numerous commercially available acaricides and their active substances have been shown to have negative effects on honey bee brood development, queen and drone reproductive health, learning, longevity and colony strength. Acaricides do not only act alone, but also in synergic combinations to affect bee health. Since some drugs cause substantial weakening of bee colonies, they can make them more susceptible to other diseases such as nosematosis or to extreme climatic events. As wax combs are contaminated with high concentrations of acaricide residues and Varroa mites are chronically exposed to them, the parasite may develop resistance faster. In combination with other stressors, acaricides could be a contributing factor to colony collapses.
Key words: synthetic acaricides; varroacides; honey bee; Apis mellifera; synergy; organic beekeeping
VPLIV UMETNIH IN NARAVNIH AKARICIDOV NA ZDRAVJE MEDONOSNIH ČEBEL
Povzetek: Čebele so pomemben opraševalec kmetijskih pridelkov in gospodarsko pomemben proizvajalec izdelkov, kot sta med in vosek, ki se uporabljajo v živilski industriji, kozmetiki in medicini. Trenutno je zunanji zajedavec pršica varoja (Varroa destructor) eden največjih škodljivcev za čebele v svetu. Brez zdravljenja čebelje družine napadene z varojo večinoma propadejo v nekaj letih. Za ohranjanje nizke populacije pršic varoj čebelarji uporabljajo umetne in naravne akaricide. Najbolj priljubljeni, komercialno dostopni, so amitraz, kumafos, flumetrin, fluvalinat, mravljinčna kislina, oksalna kislina in timol. Ti akaricidi so dokaj poceni in enostavni za uporabo, vendar podaljšana uporaba povzroča hitro razvijanje odpornosti pri pršicah varoja in večjo možnost onesnaženja čebeljih pridelkov. Ostanki akaricidov so po zdravljenju lahko prisotni v visokih koncentracijah v celotnem panju in so jim čebele izpostavljene celo leto. Po uporabi je tudi satje pogosto onesnaženo z visokimi koncentracijami ostankov akaricidov, ki so jim pršice varoja kronično izpostavljene in lahko zaradi tega hitreje razvijejo odpornost. Pregledni članek povzema trenutno znanje o škodljivih učinkih konvencionalnih akaricidov na zdravje čebel. Dokazano je, da imajo številni komercialno dostopni akaricidi in njihove aktivne snovi negativne učinke na razvoj čebel, vplivajo na razmnoževalno sposobnost čebelje matice in zmanjšujejo sposobnost učenja čebel ter dolgoživost in moč kolonije. Akaricidi ne delujejo samo kot posamezne učinkovine, ampak tudi sinergistično, kar lahko dodatno slabo vpliva na zdravje čebelje družine. Nekatera zdravila lahko povzročijo znatno oslabitev čebeljih družin, lahko pa jih tudi naredijo bolj dovzetne za druge bolezni, kot je nozemavost, ali bolj občutljive na slabe vremenske razmere. V kombinaciji z drugimi stresorji lahko akaricidi prispevajo k propadu čebelje družine.
Ključne besede: umetni akaricidi; varoicidi; čebela; Apis mellifera; sinergija; ekološko čebelarjenje
References
(1) Abrol DP. Honeybee and crop pollination. In: Abrol DP. Pollination biology: biodiversity conservation and agricultural production. New York: Springer Science ; Business Media, 2012: 85–110.
(2) Gallai N, Salles JM, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 2009; 68: 810–21.
(3) Ogaba M. Household poverty reduction through bee-keeping amongst Uganda rural women. Kampala: Uganda National Apiculture Development Organisation, 2002: 5.
(4) Kayode L, Lizette D, Johnson RM, Siegfried BD, Ellis MD. Effect of amitraz on queen honey bee egg and brood development. Mellifera 2014; 14: 33–40.
(5) Rosenkranz P, Aumeier P, Ziegelmann B. Biology and control of Varroa destructor. J Invertebr Pathol 2010; 103: S96–119.
(6) Chlebo R. Treating varroasis and monitoring bee colony losses in Slovakia. In: 8. setkánà uživatelů Varroa Monitoring Systému, 10th January 2016. Brno, Czech Republic, 2016.
(7) Nanetti A, Büchler R, Charriere JD, et al. Oxalic acid treatments for varroa control (review). Apiacta 2003; 38: 81–7.
(8) Burgett DM. Evaluation of Apistan ™ as a control agent for Tropilaelaps clareae (Acari: Laelapidae), an Asian honey bee brood mite parasite. Am Bee J 1990; 130: 51–3.
(9) Kulincevic JM, Rinderer TE, Mladjan VJ. Effects of fluvalinate and amitraz on bee lice (Braula coeca Nitzsch) in honey bee (Apis mellifera L) colonies in Yugoslavia. Apidologie 1991; 22: 43–7.
(10) Vidal-Naquet N. Honeybee veterinary medicine: Apis mellifera L. Sheffield: 5m Publishing, 2015: 126–7.
(11) Sammataro D. Global status of honey bee mites. In: Sammataro D, Yoder JA, eds. Honey bee colony health, challenges and sustainable solutions. Boca Raton: CRC Press, 2012: 37–54.
(12) Smodis Skerl MI, Kmecl V, Gregorc A. Exposure to pesticides at sublethal level and their distribution within a honey bee (Apis mellifera) colony. Bull Environ Contam Toxicol 2010; 85: 125–8.
(13) Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Pettis JS. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 2010; 5(3): e9754. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009754
(14) Al-Waili N, Salom K, Al-Ghamdi A, Ansari MJ. Antibiotic, pesticide, and microbial contaminants of honey: human health hazards. ScientificWorldJournal 2012; 2012: art ID 930849. https://www.hindawi.com/journals/tswj/2012/930849/
(15) van Buren NW, Mariën AG, Oudejans RC, Velthuis HH. Perizin, an acaricide to combat the mite Varroa jacobsoni: its distribution in and influence on the honeybee Apis mellifera. Physiol Entomol 1992; 17: 288–96.
(16) Henderson C. Tests of chemical control agents for Varroa jacobsoni in honey-bee packages. In: Needham GR, Page Jr, RE, Definado-Baker M, Bowman CE Africanized honey bees and mites. Chichester: Ellis Horwood, 1988: 380–6.
(17) Currie RW. Fluvalinate queen tabs for use against Varroa jacobsoni Oud.: Apis mellifera L., queen and colony performance. Am Bee J 1999; 139: 871–6.
(18) Gregorc A. A clinical case of honey bee intoxication after using coumaphos strips against Varroa destructor. J Apic Res 2012; 51: 142–3.
(19) Chiesa F, D'agaro M. Effective control of varroatosis using powdered thymol. Apidologie 1991; 22: 135–45.
(20) Gal H, Slabezki Y, Lensky Y. A preliminary report on the effect of origanum oil and thymol applications in honey bee (Apis mellifera L.) colonies in a subtropical climate on population levels of Varroa jacobsoni. Bee Sci 1992; 2: 175–80.
(21) Ellis MD, Baxendale FP. Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. J Econ Entomol 1997; 90: 1087–91.
(22) Coffey MF, Breen J. The efficacy and tolerability of Api-Bioxal® as a winter varroacide in a cool temperate climate. J Apic Res 2016; 55: 65–73.
(23) Dahlgren L, Johnson RM, Siegfried BD, Ellis MD. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J Econ Entomol 2012; 105: 1895–902.
(24) Pettis JS, Wilson WT, Shimanuki H, Teel PD. Fluvalinate treatment of queen and worker honey bees (Apis mellifera L.) and effects on subsequent mortality, queen acceptance and supersedure. Apidologie 1991; 22: 1–7.
(25) Mautz D. Experiments on the toxicity of thymol to honeybees. Apidologie 1982; 13: 103–4.
(26) Aliano NP, Ellis MD Oxalic acid: a prospective tool for reducing Varroa mite populations in package bees. Exp Appl Acarol 2009; 48: 303–9.
(27) Toomemaa K, Martin AJ, Mänd M, Williams IH. Using oxalic acid in water solution in control of Varroa mites and its influence on honey bees. Agron Res 2010; 8: 345–50.
(28) Al Toufailia H, Scandian L, Ratnieks FL. Towards integrated control of varroa: 2) comparing application methods and doses of oxalic acid on the mortality of phoretic Varroa destructor mites and their honey bee hosts. J Apic Res 2015; 54: 108–20.
(29) Bevk D, Kralj J, Čokl A. Coumaphos affects food transfer between workers of honeybee Apis mellifera. Apidologie 2012; 43: 465–70.
(30) Hoppe HW, Ritter W, Stephen EWC. The control of parasitic bee mites: Varroa jacobsoni, Acarapis woodi and Tropilaelaps clareae with formic acid. Am Bee J 1989; 29: 739–42.
(31) Mattila HR, Otis GW. Trials of Apiguard, a thymol-based miticide. Part 1. Efficacy for control of parasitic mites and residues in honey. Am Bee J 1999; 139: 947–52.
(32) Gatien P, Currie RW. Timing of acaracide treatments for control of low-level populations of Varroa destructor (Acari: Varroidae) and implications for colony performance of honey bees. Can Entomol 2003; 135: 749–63.
(33) Mondet F, Goodwin M, Mercer A. Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. J Comp Physiol A 2011; 197: 1055.
(34) Bolli HK, Bogdanov S, Imdorf A, Fluri P. Action of formic acid on Varroa jacobsoni Oud. and the honeybee (Apis mellifera L.). Apidologie 1993; 24: 51–7.
(35) Loucif-Ayad W, Aribi N, Smagghe G, Soltani N. A scientific note on the impact of acaracides on the nutritional biochemistry of Apis mellifera intermissa (Hymenoptera: Apidae). Apidologie 2010; 41: 135–7.
(36) Loucif-Ayad W, Aribi N, Soltani N. Evaluation of secondary effects of some acaricides on Apis mellifera intermissa (Hymenoptera, Apidae): acetylcholinesterase and glutathione S-transferase activities. Eur J Sci Res 2008; 21: 642–9.
(37) Zakaria ME, Allam SF. Effect of some aromatic oils and chemical acaricides on the mechanical defense behavior of honey bees against Varroa invasion and relationship with sensation responses. J Appl Sci Res 2007; 3: 653–61.
(38) Nozal M, Bernal J, Gómez L, Higes M, Meana A. Determination of oxalic acid and other organic acids in honey and in some anatomic structures of bees. Apidologie 2003; 34: 181–8.
(39) MartÃn-Hernández R, Higes M, Pérez JL, Nozal MJ, Gómez L, Meana A. Short term negative effect of oxalic acid in Apis mellifera iberiensis. Span J Agric Res 2007; 5: 474–80.
(40) Marchetti S, Barbattini R, D’Agaru M. Comparative effectiveness of treatments used to control Varroa jacobsoni Oud. Apidologie 1984; 15: 363–78.
(41) Toth PL. Lethal and sublethal effects of imidacloprid and amitraz on Apis mellifera Linnaeus (Hymenoptera: Apidae) larvae and pupae. Gainesville : University of Florida, 2009. Doctoral dissertation
(42) Gregorc A, Evans JD, Scharf M, Ellis JD. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and varroa mites (Varroa destructor). J Insect Physiol 2012; 58: 1042–9.
(43) Garrido PM, Antúnez K, MartÃn M, Porrini MP, Zunino P, Eguaras MJ. Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides. J Insect Physiol 2013; 59: 113–9.
(44) Brimecombe R, Limson J. Voltammetric analysis of the acaricide amitraz and its degradant, 2, 4-dimethylaniline. Talanta 2007; 71: 1298–303.
(45) Berry JA. Pesticides, bees and wax. Bee Culture 2009; 137: 33–5.
(46) Knowles CO, Gayen AK. Penetration, metabolism and elimination of amitraz and N-(2,4-dimethylphenyl)-N-methylformamidine in Southwestern corn borer larvae (Lepidoptera: Pyralidae). J Econ Entomol 1983; 76: 410–3.
(47) Knowles CO, Hamed MS. Comparative fate of amitraz and N-(2,4-dimethylphenyl)-N-methylformamidine (BTS-27271) in bollworm and tobacco budworm larvae (Lepidoptera, Noctuidae). J Econ Entomol 1989; 82: 1328–34.
(48) Gregorc A, Bowen ID. Histochemical characterization of cell death in honeybee larvae midgut after treatment with Paenibacillus larvae, amitraz and oxytetracycline. Cell Biol Int 2000; 24: 319–24.
(49) Burley LM. The effects of miticides on the reproductive physiology of honey bee (Apis mellifera L.) queens and drones. Blacksburg : Faculty of Virginia Polytechnic Institute, 2007. (Master of science)
(50) Burley LM, Fell RD, Saacke RG. Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. J Econ Entomol 2008; 101: 1081–7.
(51) Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 2012; 58: 613–20.
(52) Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 2016; 7: e1255. https://www.frontiersin.org/articles/10.3389/fmicb.2016.01255/full
(53) Berry JA, Hood WM, Pietravalle S, Delaplane KS. Field-level sublethal effects of approved bee hive chemicals on honey bees (Apis mellifera L). PloS One 2013; 8(10): e76536. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076536
(54) Fell RD, Tignor K. Miticide effects on the reproductive physiology of queens and drones. Am Bee J 2001; 141: 888–9.
(55) Lienau FW. Effect of varroacide and pesticide treatment on honeybees. Apidologie 1990; 21: 375–7.
(56) Cizelj I, Glavan G, BožiÄ J, Oven I, Mrak V, Narat M. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann). Pest Biochem Physiol 2016; 128: 68–75.
(57) Haarmann TK, Spivak M. The effects of fluvalinate and coumaphos in two commercial queen rearing operations. Am Bee J 2001; 141: 889.
(58) Haarmann T, Spivak M, Weaver D, Weaver B, Glenn T. Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. J Econ Enomol 2002; 95: 28–35.
(59) Pettis J, Collins A, Wilbanks R, Feldlaufer MF. Effects of coumaphos on queen rearing in the honey bee, Apis mellifera. Apidologie 2004; 35: 605–10.
(60) Collins AM, Pettis JS, Wilbanks R, Feldlaufer MF. Performance of honey bee (Apis mellifera) queens reared in beeswax cells impregnated with coumaphos. J Apic Res 2004; 43: 128–34.
(61) Collins AM, Pettis JS. Correlation of queen size and spermathecal contents and effects of miticide exposure during development. Apidologie 2013; 44: 351–6.
(62) Schmehl DR, Teal PE, Frazier JL, Grozinger CM. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J Insect Physiol 2014; 71: 177–90.
(63) Zhu W, Schmehl DR, Mullin CA, Frazier JL. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PloS one 2014; 9: e77547 (11 pp). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077547
(64) Forkpah C, Dixon LR, Fahrbach SE, Rueppell O. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers. PloS One 2014; 9(3): e91180.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091180
(65) Johnson RM, Pollock HS, Berenbaum MR. Synergistic interactions between in-hive miticides in Apis mellifera. J Econ Entomol 2009; 102: 474–9.
(66) Hillier NK, Frost EH, Shutler D.Fate of dermally applied miticides fluvalinate and amitraz within honey bee (Hymenoptera: Apidae) bodies. J Econ Entomol 2013; 106: 558–65.
(67) Chaimanee V, Evans JD, Chen Y, Jackson C, Pettis JS. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J Insect Physopl 2016; 89: 1–8.
(68) Medici SK, Castro A, Sarlo EG, Marioli JM, Eguaras MJ. The concentration effect of selected acaricides present in beeswax foundation on the survival of Apis mellifera colonies. J Apic Res 2012; 51: 164–8.
(69) Wu JY, Anelli CM, Sheppard WS. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PloS one 2011; 6: e14720 (11 pp). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014720
(70) Rademacher E, Harz M. Oxalic acid for the control of varroasis in honey bee colonies–a review. Apidologie 2006; 37: 98–120.
(71) Nielsen SA, Brødsgaard CJ, Hansen H. Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). Alter Lab Anim 1999; 28: 437–43.
(72) Rinderer TE, de Guzman LI, Lancaster VA, Delatte GT, Stelzer JA. Varroa in the mating yard I. The effects of Varroa jacobsoni and Apistan® on drone honey bees. Am Bee J 1999; 139: 134–9.
(73) Duff SR, Furgala B. Some effects of menthol and fluvalinate on mite-free honey bee (Apis mellifera L.) colonies. Am Bee J 1992; 32: 476–7.
(74) Rouibi A, Bouchema WF, Loucif-Ayad W, Achou M, Soltani N. Risks assessment of two acaricides (fluvalinate and oxalic acid) in Apis mellifera intermissa (Hymenoptera, Apidae): acetylcholinesterase and glutathione S-transferase activities. J Entomol Zool Stud 2016; 4: 503–8.
(75) Retschnig G, Williams GR, Odemer R, et al. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment. Environ Microbiol 2015; 17: 4322–31.
(76) Sokol R. Effects of long-term persistence of Fluwarol (fluvalinate) on honey bee colonies. Med Wet 1996; 52: 718–20.
(77) Taylor KS, Waller GD, Crowder LA. Impairment of a classical conditioned response of the honey bee (Apis mellifera L.) by sublethal doses of synthetic pyrethroid insecticides. Apidologie 1987; 18: 243–52.
(78) Frost EH, Shutler D, Hillier NK. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. J Exp Biol 2013; 216: 2931–8.
(79) Teeters BS, Johnson RM, Ellis MD, Siegfried BD. Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ Toxicol Chem 2012; 31: 1349–54.
(80) Liu TP. Fluvalinate and its after-effects. Am Bee J 1992; 132: 398.
(81) Borsuk G, Olszewski K, Paleolog J, Strachecka A, Gryzinska M. The effect of different varroacides on the acidity of winter stores and honey stores. An Univ Mariae Curie-Skłodowska Sec EE Zootech 2012; 30: 11–6.
(82) Satta A, Floris I, Eguaras M, Cabras P, Garau VL, Melis M. Formic acid-based treatments for control of Varroa destructor in a Mediterranean area. J Econ Entomol 2005; 98: 267–73.
(83) Giusti M, Sabelli C, Di Donato A, et al. Efficacy and safety of Varterminator, a new formic acid medicine against the varroa mite. J Apic Res 2017; 56: 162–7.
(84) Gunes N, Aydın L Belenli D, Hranitz JM, Mengilig S, Selova S. Stress responses of honey bees to organic acid and essential oil treatments against varroa mites. J Apic Res 2017; 56: 175–81.
(85) Gregorc A, Pogacnik A, Bowen I. Cell death in honeybee (Apis mellifera) larvae treated with oxalic or formic acid. Apidologie 2004; 35: 453–60.
(86) Ostermann DJ, Currie RW. Effect of formic acid formulations on honey bee (Hymenoptera: Apidae) colonies and influence of colony and ambient conditions on formic acid concentration in the hive. J Econ Entomol 2004; 97: 1500–8.
(87) Elzen PJ, Westervelt D, Lucas R. Formic acid treatment for control of Varroa destructor (Mesostigmata: Varroidae) and safety to Apis mellifera (Hymenoptera: Apidae) under southern United States conditions. J Econ Entomol 2004; 97: 1509–12.
(88) de Guzman LI, Rinderer TE, Lancatser VA, Delatte GT, Stelzer A. Varroa in the mating yard. III. The effects of formic acid gel formulation on drone production. Am Bee J 1999; 139: 304–7.
(89) Strachecka AJ, Paleolog J, Borsuk G, Olszewski K. The influence of formic acid on the body surface proteolytic system at different developmental stages in Apis mellifera L. workers. J Apic Res 2012; 51: 252–62.
(90) Westcott LC, Winston ML. Chemical acaricides in Apis mellifera colonies: do they cause nonlethal effects? Can Entomol 1999; 131: 363–71.
(91) Abramson CI. Aversive conditioning in honeybees (Apis mellifera). J Comp Psychol 1986; 100: 108–16.
(92) Underwood R., Currie R. Use of formic acid to control Varroa and tracheal mites in indoor overwintering facilities. Am Bee J 2003; 143: 323.
(93) Hatjina F, Haristos L. Indirect effects of oxalic acid administered by trickling method on honey bee brood. J Apic Res 2005; 44: 172–4.
(94) Gregorc A, Smodiš-Škerl MI. Toxicological and immunohistochemical testing of honeybees after oxalic acid and rotenone treatments. Apidologie 2007; 38: 296–305.
(95) Charrière JD, Imdorf A. Oxalic acid treatment by trickling against Varroa destructor: recommendations for use in central Europe and under temperate climate conditions. Bee World 2002; 83: 51–60.
(96) Adjlane N, Tarek EO, Haddad N. Evaluation of oxalic acid treatments against the mite Varroa destructor and secondary effects on honey bees Apis mellifera. J Arthropod Borne Dis 2016; 10: 501.
(97) Toomemaa K, Martin AJ, Williams IH. The effect of different concentrations of oxalic acid in aqueous and sucrose solution on Varroa mites and honey bees. Apidologie 2010; 41: 643–53.
(98) Higes M, Meana A, Suárez M, Llorente J. Negative long-term effects on bee colonies treated with oxalic acid against Varroa jacobsoni Oud. Apidologie 1999; 30: 289–92.
(99) Silva-Zacarin EC, Gregorc A, de Moraes RLS. In situ localization of heat-shock proteins and cell death labelling in the salivary gland of acaricide-treated honeybee larvae. Apidologie 2006; 37: 507–16.
(100) Ellis JD, Delaplane KS, Hood WM. Efficacy of a bottom screen device, Apistan TM, and Apilife VAR TM, in controlling Varroa destructor. Am Bee J 2001; 141: 813–6.
(101) Skinner JA, Parkman JP, Studer MD. Evaluation of Apilife VAR and Checkmite+ for management of Varroa and tracheal mites in Tennessee. Am Bee J 2000; 140: 908.
(102) Imdorf A, Bogdanov S, Kilchenmann V, Maquelin C. Apilife VAR: a new varroacide with thymol as the main ingredient. Bee World 1995; 76: 77–83.
(103) Floris I, Satta A, Cabras P, Garau VL, Angioni A. Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence, and residues. J Econ Entomol 2004; 97: 187–91.
(104) Alayrangues J, Hotier L, Massou I, Bertrand Y, Armengaud C. Prolonged effects of in-hive monoterpenoids on the honey bee Apis mellifera. Ecotoxicology 2016; 25: 856–62.
(105) Giacomelli A, Pietropaoli M, Carvelli A, Iacoponi F, Formato G. Combination of thymol treatment (Apiguard®) and caging the queen technique to fight Varroa destructor. Apidologie 2016; 47: 606–16.
(106) Schulz S. Treatment of varroatosis with essential oils-depending on the Apilife/Var dosage. Apidologie 1993; 24: 497–9.
(107) Johnson RM, Dahlgren L, Siegfried BD, Ellis MD. Effect of in-hive miticides on drone honey bee survival and sperm viability. J Apic Res 2013; 52: 88–95.
(108) Charpentier G, Vidau C, Ferdy JB, Tabart J, Vetillard A. Lethal and sub-lethal effects of thymol on honeybee (Apis mellifera) larvae reared in vitro. Pest Manag Sci 2014; 70: 140–7.
(109) Whittington R, Winston ML, Melathopoulos AP, Higo HA. Evaluation of the botanical oils neem, thymol and canola sprayed to control Varroa jacobsoni (Acari: Tarsonemidae) in colonies of honey bees (Apis mellifera L., Hymenoptera: Apidae). Am Bee J 2000; 140: 567–72.
(110) Bariola LA. Pink bollworms (Lepidoptera: Gelechiidae): effects of low concentrations of selected insecticides on mating and fecundity in the laboratory. J Econ Entomol 1984; 77: 1278–82.
(111) Thompson HM. Behavioural effects of pesticides in bees – their potential for use in risk assessment. Ecotoxicology 2003; 12: 317–30.
(112) Rangel J, Tarpy DR. The combined effects of miticides on the mating health of honey bee (Apis mellifera L.) queens. J Apic Res 2015; 54(3): 275–83.
(113) Buren NWM, Mariën AGH, Velthuis HHW. The role of trophallaxis in the distribution of Perizin in a honeybee colony with regard to the control of the varroa mite. Entomol Exp Appl 1992; 65: 157–64.
(114) Williams JL, Ambrose JT, Wright CG. The effect of fluvalinate (ApistanTM Queen Tabs) on queen and worker honey bees in transit and colony survivorship. Am Bee J 1994; 134: 759–62.
(115) Camargo JD, Goncalves LS. Manipulation procedures in the technique of instrumental insemination of the queen honeybee Apis mellifera L. (Hymenoptera: Apidae). Apidologie 1971; 2: 239–46.
(116) Woyke J. Sex determination In: Rinderer TE, ed. Bee genetics and breeding. Hebden Bridge : Northern Bee Books, 2010: 91–119.
(117) Orantes-Bermejo FJ, Pajuelo AG, MegÃas MM, Fernández-PÃñar CT. Pesticide residues in beeswax and beebread samples collected from honey bee colonies (Apis mellifera L.) in Spain. Possible implications for bee losses. J Apic Res 2010; 49: 243–50.
(118) Mattila HR, Otis GW, Daley J, Schulz T. Trials of Apiguard, a thymol-based miticide. Part 2. Non-target effects on honey bees. Am Bee J 2000; 140: 68–70.
(119) Weick J, Thorn RS. Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odor stimuli in the honey bee (Hymenoptera: Apidae). J Econ Entomol 2002; 95: 227–36.
(120) Wu JY, Smart MD, Anelli CM, Sheppard WS. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol 2012; 109: 326–9.
(121) Locke B, Forsgren E, Fries I, de Miranda JR. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl Environ Microbiol 2012; 78: 227–35.
(122) Stoner A, Wilson WT, Moffett JO. Effect of long-term feeding of low doses of fenvalerate or fluvalinate in sucrose syrup on honey bees in standard-size field colonies. J Ga Entomol Soc 1984; 19: 490–8.
(123) Lodesani M, Colombo M, Spreafico M. Ineffectiveness of Apistan® treatment against the mite Varroa jacobsoni Oud. in several districts of Lombardy (Italy). Apidologie 1995; 26: 67–72.
(124) Elzen JR, Baxter M, Spivak M, Wilson WT. Amitraz resistance in varroa: new discovery in North America. Am Bee J 1999; 139: 362.
(125) Mayer L, Poklukar J. Coumaphos and amitraz in Slovenia honey. Apiacta 2003; 38: 54–7.
(126) Moosbeckhofer R. Apistan und Bayvarol: Langzeitwirkung behandelter Waben. Bienenvater 1991; 112: 90–2.
(127) Fries I, Wallner K, Rosenkranz P. Effects on Varroa jacobsoni from acaricides in beeswax. J Apic Res 1998; 37: 85–90.
(128) Medici SK, Maggi MD, Sarlo EG, Ruffinengo S, Marioli JM, Eguaras MJ. The presence of synthetic acaricides in beeswax and its influence on the development of resistance in Varroa destructor. J Apic Res 2015; 54: 267–74.
(129) Ellis JD, Delaplane KS. The effects of three acaricides on the developmental biology of small hive beetles (Aethina tumida). J Apic Res 2007; 46: 256–9.
(130) Lodesani M, Costa C, Bigliardi M, Colombo R. Acaricide residues in bee wax and organic beekeeping. Apiacta 2003; 38: 1–3.
(131) Johnson RM, Dahlgren L, Siegfried BD, Ellis MD. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PloS One 2013; 8(1): e54092 (10 pp). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054092
(132) Hawthorne DJ, Dively GP. Killing them with kindness? In-hive medications may inhibit xenobiotic efflux transporters and endanger honey bees. PLoS One 2011; 6(11): e26796. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026796
(133) Bogdanov S, Kilchenmann V, Fluri P, Bühler U, Lavanchy P. Influence of organic acids and components of essential oils on honey taste. Am Bee J 1999; 139: 61–3.
(134) Boyle NK, Sheppard WS. A scientific note on seasonal levels of pesticide residues in honey bee worker tissues. Apidologie 2017; 48: 128–30.
(135) Elzen PJ, Elzen GW, Rubink W. Comparative susceptibility of European and Africanized honey bee ecotypes to several insecticide classes. Southwest Entomol 2003; 28: 255–60.
(136) Frazier M, Mullin C, Frazier J, Ashcraft S. What have pesticides got to do with it? Am Bee J 148: 521–4.
(137) Wallner K. Varroacides and their residues in bee products. Apidologie 1999; 30: 235–48.
(138) Bentzien C. Ökologisch imkern. Stuttgart: Franckh Kosmos, 2006.
(139) Livia PO, Patrizio P, Cinzia M, Enzo M. Organic beekeeping and acaricide residues in beewax. Research in the Lazio region (Central Italy). Apiacta 2003; 38: 40–5.
(140) Tihelka E. History of varroa heat treatment in Central Europe (1981–2013). Bee World 2016; 93: 4–6.