CORTISOL CONCENTRATIONS IN HAIR, BLOOD AND MILK OF HOLSTEIN AND BUSHA CATTLE

Sreten Nedić, Marija Pantelić, Sanja Vranješ-Đurić, Drago Nedić, Ljubomir Jovanović, Nina Čebulj-Kadunc, Silvestra Kobal, Tomaž Snoj, Danijela Kirovski

Abstract


Cortisol levels were measured in hair, blood and milk in two different cattle breeds, kept under different breeding conditions and with different genetic merit for milk production. Cows and heifers of Holstein and Busha breeds were selected for the study. Cortisol concentration was determined by immunoassays. Cortisol accumulation was determined in proximal (close to the skin) and distal (far from the skin) segments of the hair shaft. The influence of hair colour and washing prior to extraction and analysis was also examined in order to establish additional factors that may have an impact on hair cortisol concentrations. Concentrations of cortisol determined in the proximal and distal segments of the shaft were significantly higher in Holstein than Busha cows and heifers (P<0.05 and P<0.01, respectively). In Holstein cows, no significant difference was found between concentrations in black and white hair. In hair washed with isopropanol, cortisol concentration was significantly lower compared to unwashed hair (P<0.01). Thus, cortisol concentration in hair varies with the technique of hair processing (washing), but not with colour in Holstein cows. Blood serum cortisol concentrations in Holstein cows and heifers were significantly higher than in Busha cows and heifers, (P<0.01 and P<0.05, respectively). Milk cortisol in Holstein cows was significantly higher than in Busha cows (P<0.05). The higher cortisol concentrations in Holstein cows are assumed to be the result of intensive breeding and physiological adaptation to high milk production.

Key words: cattle; cortisol; hair; blood; milk

 

KONCENTRACIJA KORTIZOLA V DLAKI, KRVI IN MLEKU KRAV ČRNO-BELE PASME IN PASME BUŠA

Ugotavljali smo koncentracijo kortizola v dlaki, krvi in mleku pri govedu dveh pasem, ki se razlikujeta po mlečnosti in pogojih reje. Raziskavo smo izvedli na kravah in telicah črno-bele pasme in pasme buša. Koncentracijo kortizola smo ugotavljali z imunoencimskimi metodami. Akumulacijo kortizola smo določili v proksimalnem (bliže koži) in distalnem (dlje od kože) delu dlake. Obenem smo ugotavljali vpliv barve in pranja dlake na koncentracijo kortizola. Tako v proksimalnem kot v distalnem delu dlake je bila koncentracija kortizola pri kravah črno-bele pasme v primerjavi s kravami pasme buša statistično značilno višja (P<0,01 in P<0,05). Pri primerjavi koncentracije kortizola med črno in belo dlako črno-belih krav nismo ugotovili statistično značilnih razlik. V dlaki, ki smo jo pred izvedbo določanja koncentracije kortizola oprali z izopropanolom, smo v primerjavi z neoprano dlako ugotovili statistično značilno nižjo vrednost kortizola (P<0,01). Rezultati torej kažejo, da je koncentracija kortizola v dlaki odvisna od načina priprave vzorca (pranje dlake), barva dlake pri črnobeli pasmi pa ne vpliva na koncentracijo kortizola.. V krvnem serumu krav in telic črno-bele pasme je bila koncentracija kortizola statistično značilno višja (P<0,01 in P<0,05) kot pri kravah in telicah pasme buša. Tudi v mleku krav črno-bele pasme je bila koncentracija kortizola statistično značilno višja (P<0,05) kot pri kravah pasme buša. Predvidevamo, da je višji nivo kortizola pri črno-beli pasmi rezultat intenzivne reje in fiziološke prilagoditve na visoko mlečnost.

Ključne besede: govedo; kortizol; dlaka; kri; mleko


Full Text:

PDF

References


(1) Mormède P, Andanson P, Aupérin B, et al. Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol Behav 2007; 92: 317–39.

(2) Comin A, Prandi A, Peric T, et al. Hair cortisol levels in dairy cows from winter housing to summer highland grazing. Livestock Sci 2011; 138: 69–73.

(3) Minton JE. Function of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system in models of acute stress in domestic farm animals. J Anim Sci 1994; 72: 1891–8.

(4) Möstl E, Palme R. Hormones as indicators of stress. Domest Anim Endocrinol 2002; 23: 67–74

(5) Sgorlon S, Fanyago M, Guiatti D, et al. Factors affecting milk cortisol in mid lactating dairy cows. BMC Vet Res 2015; 11: e259 (8pp.). https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-015-0572-9 (30. 11. 2017)

(6) Moberg GP, Mench JA. The biology of animal stress. Wallingford : CAB International, 2000.

(7) Moya D, Schwartzkopf-Genswein KS, Veira DM. Standardization of a non-invasive methodology to measure cortisol in hair of beef cattle. Livest Sci 2013; 158: 138–44.

(8) Morrow CJ, Kolver ES, Verkerk GA, et al. Fecal glucocorticoid metabolites as a measure of adrenal activity in dairy cattle. Gen Comp Endocrinol 2002; 126: 229–41.

(9) Perez GC, Laita SGB, Portal JCI, et al. Validation of an EIA technique for the determination of salivary cortisol in cattle. Spanish J Agricult Res 2004; 2: 45–51.

(10) Lefcourt AM, Bitman J, Kahl S, et al. Circadian and ultradian rhythms of peripheral cortisol concentrations in lactating dairy cows. J Dairy Sci 1993; 76: 2607–12.

(11) Chen Y, Arsenault R, Napper S, et al. Models and methods to investigate acute stress responses in cattle. Animal 2005; 5: 1268–95.

(12) Davenport MD, Tiefenbacher S, Lutz CK, et al. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gene Comp Endocrinol 2006; 147: 255–61.

(13) Bennett A, Hayssen V. Measuring cortisol in hair and saliva from dogs: coat color and pigment differences. Domest Anim Endocrinol 2010; 39: 171–80.

(14) Comin A, Peric T, Corazzin M, et al. Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activation in Friesian dairy cows clinically or physiologically compromised. Livest Sci 2013; 152: 36–41.

(15) Šamanc HA, Kirovski D. Adrenocorticotropic system of cattle. Belgrade : Veterinary Institute of Serbia, 2008.

(16) Corazzin M, Piasentier E, Dovier S, et al. Effect of summer grazing on welfare of dairy cows reared in mountain tie-stall barns. Ital J Anim Sci 2010; 9: 304–12.

(17) Simčić M, Čepon M, Horvat S, et al. Genetic characterization of autochthonous cattle breeds Cika and Busha, using microsatellites. Acta Agric Slov 2008; 2: 71–7.

(18) Bonczek RR, Young CW, Wheaton JE, et al. Responses of somatotropin, insulin, prolactin and thyroxine to selection for milk yield in Holsteins. J Dairy Sci 1988: 71: 2470–9.

(19) Snoj T, Cebulj-Kadunc N, Nemec Svete A, et al. Determination of sex hormones in rat hair after administration of testosterone propionate and estradiol valerate. Slov Vet Res 2012: 49: 27–34.

(20) Brkljačić M. Inflammatory response in dogs naturally infected with Babesia canis canis: PhD thesis. Zagreb : Faculty of Veterinary medicine, University of Zagreb, 2012.

(21) Kirschbaum C, Tietze A, Skoluda N, et al. Hair as a retrospective calendar of cortisol production-increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 2009; 34: 32–7.

(22) Duran MC, Janz DM , Waldner CL, et al. Hair cortisol concentration as a stress biomarker in horses: associations with body location and surgical castration. J Equine Vet Sci 2017; 55: 27–33.

(23) Wester LV, van der Wulp NRP, Koper JW, et al. Hair cortisol and cortisone are decreased by natural sunlight. Psychoneuroendocrinology 2016; 72: 94–6.

(24) Roth LSV, Faresjö Å, Theodorsson E, et al. Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs. Sci Rep 2016; 6: e19631. https://www.nature.com/articles/ srep19631 (30. 11. 2017)

(25) González-de-la-Vara MR, Valdez RA, Lemus-Ramirez V, et al. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle. Can J Vet Res 2011; 75: 216–21.

(26) Burnett TA, Augusto MLM, Bruna FS, et al. Factors affecting hair cortisol concentrations in lactating dairy cows. J Dairy Sci 2014; 97: 1–6.

(27) Tallo-Parra O, Manteca X, Sabes-Alsina M, et al. Hair cortisol detection in dairy cattle by using EIA: protocol validation and correlation with faecal cortisol metabolites. Animal 2015; 9: 1059–64.

(28) Stout PR, Ruth JA. 3H-Nicotine, 3-flunitazepam, and 3H-cocaine incorporation into melanin: A model for the examination of drug-melanin interactions. J Anal Toxicol 2001; 25: 607–11.

(29) Gleixner A, Meyer HD, Heinrich H. Detection of estradion and testosterone in hair of cattle by HPLC/EIA. Fresenius’ J Anal Chem 1997; 357: 1198–201.

(30) Russell E, Koren G, Rieder M, et al. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology 2012; 37: 589–601.

(31) Peric T, Comin A, Corazzin M, et al. Hair cortisol concentrations in Holstein-Friesian and crossbreed F1 heifers. J Dairy Sci 2013; 96: 3023–7.

(32) Dowling DF. Seasonal changes in coat characters in cattle. In: Proceedings of the Australian Society of Animal Production; 2nd Biennal Meeting. Melbourne, 1958: 69–80.

(33) Prodanović R, Kirovski D, Vujanac I, et al. Insulin responses to acute glucose infusion in Busa and Holstein-Freisian cattle breed during the peripartum period: comparative study. Acta Vet Beograd 2013; 63: 373–84.

(34) Higashiyama Y, Komatsu T, Fukasawas M, et al. Comparison of urinary cortisol levels in Holstein and Japanese shorthorn cows in response to breeding system and heat stress. J Anim Sci Adv 2014; 4: 1009–16.

(35) Golden SH, Wand GS, Malhotra S, et al. Reliability of hypothalamic-pituitary-adrenal axis assessment methods for use in population-based studies. Eur J Epidemiol 2011; 26: 511–25.

(36) Brisken C, O’Molley B. Hormone action in mammary gland. Cold Spring Harbor Persp Biol 2010; 2: 1–15.

(37) Verkerk GA, Phipps AM, Matthews LR. Milk cortisol concentrations as an indicator of stress in lactating dairy cows. Proc N Z Soc Anim Prod 1996; 56: 77–9.

(38) Hudson S, Mullord M, Whittlestone WG, et al. Diurnal variations in blood cortisol in the dairy cow. J Dairy Sci 1975; 58: 30–3.

(39). Šamanc H, Nikolić JA, Bugarski D, et al. Glycemia, glucocorticoids and adrenocortical reserve in postpartal dairy cows. Acta Vet Beograd 1999; 49: 281–8.

(40) Bustamante HA, Rodríguez AR, Herzberg DE, et al. Stress and pain response after oligofructose induced-lameness in dairy heifers. J Vet Sci 2015; 16: 405–11.

(41) Tucker HA, Schwalm JW. Glucocorticoids in mammary tissue and milk. J Anim Sci 1977; 45: 627–34.

(42) Schwalm JW, Tucker HA. Glucocorticoids in mammary secretions and blood serum during reproduction and lactation and distributions of glucocorticoids, progesterone and estrogens in fractions of milk. J Dairy Sci 1978; 61: 550–60.




DOI: http://dx.doi.org/10.26873/SVR-398-2017

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, 47 79 129, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si