• Jeff Munoz-Pérez 1 Department of Animal health, University of Caldas, C.P: 170004, Street 65, No 26-10, Manizales, Colombia 2 Cuor-Techâ„¢ Sport Medicine and Veterinary Cardiology Service, C.P 660006, Pereira, Colombia
  • Chiara Alessi 1 Department of Animal health, University of Caldas, C.P: 170004, Street 65, No 26-10, Manizales, Colombia



Chronic kidney disease (CKD) is common in dogs and cats and can occur at any age, especially in geriatric animals. The variable presentations of the disease and their different hemodynamic and metabolic alterations are issues of profound research. Currently clinicians progress in the comprehensive management of chronic kidney disease to decrease the progression and clinical symptoms of the disease and now there are numerous novel methods that also were proposed to slow the progression of the disease, with the possibility of use in non-referral center. The objective of this critical approach is to provide an overview of the comprehensive treatment of chronic kidney disease, expose new treatments that could improve the intervention of dogs and cats with chronic kidney disease and reassess the usefulness of some existing drugs.

Key words: chronic kidney disease; cardiorenal syndrome; glomerulonephritis; dog; cat



Kronična odpoved ledvic (CKD – iz angl. chronic kidney disease) se pogosto pojavlja pri psih in mačkah katerekoli starosti, pogostejša je pri starih pacientih. Z različnimi oblikami bolezni in njihovimi raznolikimi hemodinamskimi in presnovnimi različicami se ukvarja veliko raziskav. Trenutno izboljšanje celostnega zdravljenja kronične odpovedi ledvic se osredotoča na upočasnitev napredovanja kliničnih simptomov bolezni, obstaja pa vedno več novih metod za ta način zdravljenja v nereferenčnih centrih. Cilj predlaganega kritičnega pristopa je zagotoviti celovito obravnavo kronične odpovedi ledvic ter izpostaviti nove načine zdravljenja, ki bi lahko izboljšali poseganje v zdravje psov in mačk s kronično odpovedjo ledvic in ponovno oceno uporabnosti nekaterih obstoječih zdravil.

Klljučne besede: kronična odpoved ledvic; kardiorenalni sindrom; glomerulonefritis; pes; mačka


(1) Polzin DJ. Chronic kidney disease in small animals. Vet Clin North Am Small Anim Pract 2011; 41(1): 15–30.

(2) Bartges JW. Chronic kidney disease in dogs and cats. Vet Clin North Am Small Anim Pract 2012; 42(4): 669–92.

(3) Polzin D. Chronic kidney disease. In: Bartegs J, Polzin DJ, eds. Nephrology and urology of small animals. Ames : Wiley Blackwell, 2011: 431–71.

(4) Crook E, Washington D, Flack J. Screening and prevention of chronic kidney disease. J Natl Med Assoc 2002; 94: 55S–62S.

(5) Ettinger SJ, Feldman EC. Textbook of veterinary internal medicine: diseases of the dog and cat. St. Louis : Elsevier Health Sciences, 2009.

(6) Sparkes AH. Feeding old cats: an update on new nutritional therapies. Top Companion Anim Med 2011; 26(1): 37–42.

(7) Kopple JD. Effect of nutrition on morbidity and mortality in maintenance dialysis patients. Am J Kidney Dis 1994; 24(6): 1002–9.

(8) Parker VJ, Freeman LM. Association between body condition and survival in dogs with acquired chronic kidney disease. J Vet Intern Med 2011; 25(6): 1306–11.

(9) Roudebush P, Polzin DJ, Adams LG, Towell TL, Forrester SD. An evidence-based review of therapies for canine chronic kidney disease. J Small Anim Pract 2010; 51(5): 244–52.

(10) Roudebush P, Polzin DJ, Ross SJ, Towell TL, Adams LG, Dru Forrester S. Therapies for feline chronic kidney disease. What is the evidence? J Feline Med Surg 2009; 11(3):195–210.

(11) Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015;165(4): 512–30.

(12) Richardson PE. David Sackett and the birth of evidence based medicine: how to practice and teach EBM. BMJ 2015; 350: h3089.

(13) Elliott D. Nutritional management of chronic renal disease in dogs and cats. Vet Clin North Am Small Anim Pract 2006; 36:1377–84.

(14) Elliott DA. Nutritional considerations for the dialytic patient. Vet Clin North Am Small Anim Pract 2011; 41(1): 239–50.

(15) Laflamme DP. Pet food safety: dietary protein. Top Companion Anim Med 2008; 23(3): 154–7.

(16) Larsen JA, Parks EM, Heinze CR, Fascetti AJ. Evaluation of recipes for home-prepared diets for dogs and cats with chronic kidney disease. J Am Vet Med Assoc 2012; 240(5): 532–8.

(17) Chi H, Lin X, Huang H, Zheng X, Li T, Zou Y. Omega-3 fatty acid supplementation on lipid profiles in dialysis patients: meta-analysis. Arch Med Res 2014; 45(6): 469–77.

(18) Tayebi Khosroshahi H, Mousavi Toomatari SE, Akhavan Salamat S, Davar Moin G, Najafi Khosroshahi S. Effectiveness of omega-3 supplement on lipid profile and lipid peroxidation in kidney allograft recipients. Nephrourol Mon 2013; 5(3): 822–6.

(19) Hoogeveen EK, Geleijnse JM, Kromhout D, et al. Effect of omega-3 fatty acids on kidney function after myocardial infarction: the Alpha Omega Trial. Clin J Am Soc Nephrol 2014; 9(10): 1676–83.

(20) Modaresi A, Nafar M, Sahraei Z. Oxidative stress in chronic kidney disease. Iran J Kidney Dis 2015; 9(3): 165–79.

(21) Yu S, Gross K, Allen T. A renal food supplemented with vitamins E and C and beta-carotene reduces oxidative stress and improves kidney function in client-owned dogs with stages 2 or 3 kidney disease. In: 16th ECVIM-CA Congress. Amsterdam, 2006.

(22) Brown SA. Oxidative stress and chronic kidney disease. Vet Clin North Am Small Anim Pract 2008; 38(1): 157–66.

(23) Klein BG, ed. Cunningham's textbook of veterinary physiology. 5th ed. St. Louis : Elsevier Saunders, 2013.

(24) Nelson RW, Couto CG, eds. Small animal internal medicine. 5th ed. St. Louis : Elsevier, 2014.

(25) Hill RC. Conference on "Multidisciplinary approaches to nutritional problems". Symposium on "Nutrition and health". Nutritional therapies to improve health: lessons from companion animals. Proc Nutr Soc 2009; 68(1): 98–102.

(26) Cortadellas O, Fernandez del Palacio MJ, Talavera J, Bayon A. Calcium and phosphorus homeostasis in dogs with spontaneous chronic kidney disease at different stages of severity. J Vet Intern Med 2010; 24(1): 73–9.

(27) Lippi I, Guidi G, Marchetti V, Tognetti R, Meucci V. Prognostic role of the product of serum calcium and phosphorus concentrations in dogs with chronic kidney disease: 31 cases (2008–2010). J Am Vet Med Assoc 2014; 245(10): 1135–40.

(28) King JN, Delport PC, Luus HG, Erasmus HL, Barnes PM, Speranza C. Efficacy and acceptability of the new oral phosphate binder Lenziaren((R)) in healthy cats fed a renal diet. J Vet Pharmacol Ther 2015; 38(3): 278–89.

(29) Hostutler RA, DiBartola SP, Chew DJ, et al. Comparison of the effects of daily and intermittent-dose calcitriol on serum parathyroid hormone and ionized calcium concentrations in normal cats and cats with chronic renal failure. J Vet Intern Med 2006; 20(6): 1307–13.

(30) DiBartola SP. Chronic renal failure. In: Polzin DJ, ed. Canine and feline nephrology and urology. 2nd ed. St. Louis : Elsevier Saunders, 2011: 145–96.

(31) Weir MR, Bakris GL, Bushinsky DA, Mayo MR, Garza D, Stasiv Y, et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med 2015; 372(3): 211–21.

(32) Segev G, Fascetti AJ, Weeth LP, Cowgill LD. Correction of hyperkalemia in dogs with chronic kidney disease consuming commercial renal therapeutic diets by a potassium-reduced home-prepared diet. J Vet Intern Med 2010; 24(3): 546–50.

(33) Eatroff AE, Langston CE, Chalhoub S, Poeppel K, Mitelberg E. Long-term outcome of cats and dogs with acute kidney injury treated with intermittent hemodialysis: 135 cases (1997–2010). J Am Vet Med Assoc 2012; 241(11): 1471–8.

(34) Mazzaferro EM. Blackwell's five-minute veterinary consult clinical companion: small animal emergency and critical care. Ames, Iowa : Wiley, 2011.

(35) Silverstein D, Hopper K. Small animal critical care medicine. 2nd ed. St. Louis : Elsevier Health Sciences, 2014.

(36) Gotloib L, Silverberg D, Fudin R, Shostak A. Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J Nephrol 2006; 19: 161–7.

(37) Horl W. Iron therapy for renal anemia: how much needed, how much harmful? Pediatr Nephrol 2007; 22: 480–9.

(38) Robinson B, Artz A, Culleton B, Critchlow C, Sciarra A, Audhya P. Prevalence of anemia in the nursing home: contribution of chronic kidney disease. J Am Geriatr Soc 2007; 55: 1566–70.

(39) Drueke TB. Anemia treatment in patients with chronic kidney disease. N Engl J Med 2013; 368(4): 387–9.

(40) Bodles-Brakhop A, Brown P, Pope M, Draghia-Akli R. Double-blinded, placebo-controlled plasmid GHRH trial for cancer-associated anemia in dogs. Mol Ther 2008; 16: 862–70.

(41) Randolph J, Scarlett J, Stokol T, MacLeod J. Clinical efficacy and safety of recombinant canine erythropoietin in dogs with anemia of chronic renal failure and dogs with recombinant human erythropoietin-induced red cell aplasia. J Vet Intern Med 2004; 18: 81–91.

(42) Lu X, Zhou A, Jin C. [The effects of electroporation-mediated erythropoietin (EPO) gene transfer into skeleton muscle on renal anemia]. Zhonghua Yi Xue Za Zhi 2000; 80(3): 222–5.

(43) Lin RZ, Dreyzin A, Aamodt K, et al. Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release. Blood 2011; 118(20): 5420–8.

(44) Palit S, Chonchol M, Cheung AK, Kaufman J, Smits G, Kendrick J. Association of BP with death, cardiovascular events, and progression to chronic dialysis in patients with advanced kidney disease. Clin J Am Soc Nephrol 2015; 20(6): 934–40.

(45) Imai N, Kaur T, Rosenberg ME, Gupta S. Cellular therapy of kidney diseases. Semin Dial 2009; 2(6): 29–5.

(46) Choi SJ, Kim JK, Hwang SD. Mesenchymal stem cell therapy for chronic renal failure. Expert Opin Biol Ther 2010; 10(8): 1217–26.

(47) Bianchi F, Sala E, Donadei C, Capelli I, La Manna G. Potential advantages of acute kidney injury management by mesenchymal stem cells. World J Stem Cells 2014; 6(5): 644–50.

(48) Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med 2008; 59: 311–25.

(49) Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 2007; 18(9): 2486–96.

(50) Zarjou A, Kim J, Traylor AM, et al. Paracrine effects of mesenchymal stem cells in cisplatin-induced renal injury require heme oxygenase-1. Am J Physiol Renal Physiol 2011; 300(1): F254–62.

(51) Bruno S, Grange C, Collino F, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 2012; 7(3): e33115 (11pp).

(52) Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 2010; 78(9): 838–48.

(53) van Koppen A, Joles JA, van Balkom BW, et al. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS One 2012; 7(6) : e38746 (12 pp).

(54) Mahesh S, Kaskel F. Growth hormone axis in chronic kidney disease. Pediatr Nephrol 2008; 23(1): 41–8.

(55) Mak RH, Cheung WW, Roberts CT, Jr. The growth hormone-insulin-like growth factor-I axis in chronic kidney disease. Growth Horm IGF Res 2008; 18(1): 17–25.

(56) Wuhl E, Schaefer F. Effects of growth hormone in patients with chronic renal failure: experience in children and adults. Horm Res 2002; 58(Suppl 3): 35–8.

(57) Cayir A, Kosan C. Growth hormone therapy in children with chronic renal failure. Eurasian J Med 2015; 47(1): 62–5.

(58) Mak R, Cheung W, Roberts C. The growth hormone-insulin-like growth factor-I axis in chronic kidney disease. Growth Horm IGF Res 2007; 18: 17–25.

(59) Bubber P, Sharma A, Chauhan A, Bansal DD. Effect of growth hormone on plasminogen activator and inhibitor activity in rat. Indian J Clin Biochem 2013; 28(2): 193–6.

(60) Wuhl E, Schaefer F. Effects of growth hormone in patients with chronic renal failure: experience in children and adults. Horm Res 2002; 58(Suppl 3): 35–8.

(61) Brown P, Bodles-Brakhop A, Pope M, Draghia-Akli R. Gene therapy by electroporation for the treatment of chronic renal failure in companion animals. BMC Biotechnol 2009; 9(1): e4 (13 pp).

(62) Luo Q, Liu CH, Gu M. [Recording of classical prescriptions and materia medica in the Han Dynasty]. Zhonghua Yi Shi Za Zhi 2010; 40(6): 376–8.

(63) Zhang XZ, Qian SS, Zhang YJ, Wang RQ. Salvia miltiorrhiza: a source for anti-Alzheimer's disease drugs. Pharm Biol 2016; 54(1): 18–24.

(64) Ren BX, Ji Y, Tang JC, et al. Effect of Tanshinone IIA intrathecal injections on pain and spinal inflammation in mice with bone tumors. Genet Mol Res 2015; 14(1): 2133–8.

(65) Tang J, Zhu C, Li ZH, et al. Inhibition of the spinal astrocytic JNK/MCP-1 pathway activation correlates with the analgesic effects of tanshinone IIA sulfonate in neuropathic pain. J Neuroinflammation 2015; 12(1): e57 (12 pp).

(66) Hu H, Zhai C, Qian G, et al. Protective effects of tanshinone IIA on myocardial ischemia reperfusion injury by reducing oxidative stress, HMGB1 expression, and inflammatory reaction. Pharm Biol 2015; 53(12): 1752–82.

(67) Xia T, Wu T, Ren Y, Wang Z, Wu R. [Tanshinone attenuates myocardial injury via activating JAK2/STAT1 pathway in a murine model of viral myocarditis]. Zhonghua Xin Xue Guan Bing Za Zhi 2015; 43(2): 167–72.

(68) Kim DD, Sanchez FA, Duran RG, Kanetaka T, Duran WN. Endothelial nitric oxide synthase is a molecular vascular target for the Chinese herb Danshen in hypertension. Am J Physiol Heart Circ Physiol 2007; 292(5): H2131–7.

(69) Kim SK, Jung KH, Lee BC. Protective effect of Tanshinone IIA on the early stage of experimental diabetic nephropathy. Biol Pharm Bull 2009; 32(2): 220–4.

(70) Ahn YM, Kim SK, Lee SH, et al. Renoprotective effect of Tanshinone IIA, an active component of Salvia miltiorrhiza, on rats with chronic kidney disease. Phytother Res 2010; 24(12): 1886–92.

(71) Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993;329(20):1456-62.

(72) Atkins C, Bonagura J, Ettinger S, et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Intern Med 2009; 23(6): 1142–50.

(73) Martignoni L, King JN, Pouchelot JL, Berres M. The effect of benazepril on survival times and clinical signs of dogs with congestive heart failure: results of a multicenter, prospective, randomized, double-blinded, placebo-controlled, long-term clinical trial. J Vet Cardiol 1999; 1(1): 7–18.

(74) Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system: an endocrine and paracrine system. Endocrinology 2003; 144(6): 2179–83.

(75) Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000; 52(1): 11–34.

(76) Regulski M, Regulska K, Stanisz BJ, et al. Chemistry and pharmacology of angiotensin-co

nverting enzyme inhibitors. Curr Pharm Des 2015; 21(13): 1764–75.

(77) Lantis AC, Ames MK, Atkins CE, DeFrancesco TC, Keene BW, Werre SR. Aldosterone breakthrough with benazepril in furosemide-activated renin-angiotensin-aldosterone system in normal dogs. J Vet Pharmacol Ther 2015; 38(1): 65–73.

(78) Lefebvre HP, Toutain PL. Angiotensin-converting enzyme inhibitors in the therapy of renal diseases. J Vet Pharmacol Ther 2004; 27(5): 265–81.

(79) Tiryaki O, Usalan C, Buyukhatipoglu H. Effect of combined angiotensin-converting enzyme and aldosterone inhibition on plasma plasminogen activator inhibitor type 1 levels in chronic hypertensive patients. Nephrology (Carlton) 2010; 15(2): 211–5.

(80) Usalan C, Buyukhatipoglu H. A dynamic comparative study concerning the effects of angiotensin-converting enzyme inhibitors and aldosterone receptor blockers on the fibrinolytic system. Clin Appl Thromb Hemost 2008; 14(2): 203–9.

(81) Brown SA, Brown CA, Jacobs G, Stiles J, Hendi RS, Wilson S. Effects of the angiotensin converting enzyme inhibitor benazepril in cats with induced renal insufficiency. Am J Vet Res 2001; 62(3): 375–83.

(82) Watanabe T, Mishina M. Effects of benazepril hydrochloride in cats with experimentally induced or spontaneously occurring chronic renal failure. J Vet Med Sci 2007; 69(10): 1015–23.

(83) Brown SA, Finco DR, Brown CA, et al. Evaluation of the effects of inhibition of angiotensin converting enzyme with enalapril in dogs with induced chronic renal insufficiency. Am J Vet Res 2003; 64(3): 321–7.

(84) Uechi M, Imamoto S, Ishikawa Y. Dose-dependent inhibition of angiotensin converting enzyme by enalapril in cats. J Vet Med Sci 2002; 64(4): 385–7.

(85) Huhtinen M, Derre G, Renoldi HJ, et al. Randomized placebo-controlled clinical trial of a chewable formulation of amlodipine for the treatment of hypertension in client-owned cats. J Vet Intern Med 2015; 29(3): 786–93.

(86) Asanuma K. [The role of podocyte injury in chronic kidney disease]. Nihon Rinsho Meneki Gakkai Kaishi 2015; 38(1): 26–36.

(87) Saurus P, Kuusela S, Lehtonen E, et al. Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway. Cell Death Dis 2015; 6: e1752 (12 pp).

(88) Mizutani H, Koyama H, Watanabe T, et al. Evaluation of the clinical efficacy of benazepril in the treatment of chronic renal insufficiency in cats. J Vet Intern Med 2006; 20(5): 1074–9.

(89) He YM, Feng L, Huo DM, Yang ZH, Liao YH. Enalapril versus losartan for adults with chronic kidney disease: a systematic review and meta-analysis. Nephrology (Carlton) 2013; 18(9): 605–14.

(90) King JN, Gunn-Moore DA, Tasker S, Gleadhill A, Strehlau G. Tolerability and efficacy of benazepril in cats with chronic kidney disease. J Vet Intern Med 2006; 20(5): 1054–64.




How to Cite




Review Article