ASSESSMENT OF MEAT OXIDATIVE STABILITY, NUTRITIONAL AND FATTY ACID COMPOSITIONS OF EARLY AGE ACCLIMATED AND GENETICALLY THERMORESISTANT BROILERS

Authors

  • Said Dahmouni Laboratory of applied animal physiology, FSN-UMAB, Mostaganem 27000, Algeria
  • Zineb Bengharbi Laboratory of applied animal physiology, FSN-UMAB, Mostaganem 27000, Algeria
  • Djilali Benabdelmoumene Laboratory of applied animal physiology, FSN-UMAB, Mostaganem 27000, Algeria
  • Samir A.A. El-Gendy Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Abis 10th P.O. 21944, Alexandria, Egypt
  • Mohamed A.M. Alsafy * Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Abis 10th P.O. 21944, Alexandria, Egypt, mohamed.alsafy@alexu.edu.eg

DOI:

https://doi.org/10.26873/SVR-2114-2024

Keywords:

thermotolerance, meat quality, oxidative stability, broiler

Abstract

This study explores the implication of early-age heat conditioning (EHC) and genetic thermotolerance on fatty acid compositions and oxidative stability in broiler meat quality. We employed an early heat stress strategy, involving a 24-hour exposure to 39±1°C on the fifth-day post-hatch, to acclimatise broiler chicks. Three groups were compared: control (C), acclimated (Ac), and naked neck (NN). The acclimated group exhibited significant changes in fatty acid composition compared to the control. The concentration of oleic acid (C18:1 n9) in the acclimated group was higher by approximately 8.5% compared to the control group. Similarly, linoleic acid (C18:2 n6) increased with a fold change of about 12%. The essential fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also showed notable increases, with a more balanced n-6/n-3 ratio. In terms of meat composition, Ac and NN demonstrated increased levels of ash and minerals, while maintaining comparable protein contents to C. The percentage differences in these fatty acids highlight the impact of EHC on improving the nutritional broilers’ meat quality. Furthermore, lipid peroxidation was significantly reduced in the Ac group, with thiobarbituric reactive substances (TBARS) concentrations at 0.100 mg/kg, a 56% reduction compared to that of controls 0.227 mg/kg. This reduction underscores the effectiveness of EHC in enhancing meat's oxidative stability. These results suggest that early-age heat stress acclimatization and genetic thermotolerance strategies can play a key role in enhancing the quality and nutritional value of broiler meat, offering a sustainable method to counter the challenges posed by increasing global temperatures in poultry production.

Ocena oksidativne stabilnosti mesa, hranilne vrednosti in sestave maščobnih kislin zgodaj aklimatiziranih in genetsko termoodpornih brojlerjev

Izvleček: Raziskava je preučevala vpliv zgodnje toplotne aklimatizacije (EHC) in genetske toplotne odpornosti na sestavo maščobnih kislin in oksidativno stabilnost pri kakovosti mesa brojlerjev. Za aklimatizacijo piščancev brojlerjev smo uporabili strategijo zgodnjega toplotnega stresa, ki je vključevala 24-urno izpostavljenost temperaturi 39 ± 1 °C peti dan po izvalitvi. Primerjali smo tri skupine: kontrolno (C), aklimatizirano (Ac) in skupino z golim vratom (NN). Pri aklimatizirani skupini so se v primerjavi s kontrolno skupino pokazale znatne spremembe v sestavi maščobnih kislin. Koncentracija oleinske kisline (C18:1 n9) v aklimatizirani skupini je bila za približno 8,5 odstotka višja v primerjavi s kontrolno skupino. Podobno se je linolna kislina (C18:2 n6) povečala za približno 12 odstotkov. Tudi esencialne maščobne kisline, kot sta eikozapentaenojska kislina (EPA) in dokozaheksaenojska kislina (DHA), so se občutno zvišale, razmerje n-6/n-3 pa je bilo bolj uravnoteženo. Kar zadeva hranilno vrednost mesa, sta imeli skupini Ac in NN povečano vsebnost pepela in mineralov, pri čemer sta ohranili primerljivo vsebnost beljakovin v primerjavi s skupino C. Odstotne razlike v omenjenih maščobnih kislinah poudarjajo vpliv EHC na izboljšanje prehranske kakovosti mesa brojlerjev. Poleg tega se je lipidna peroksidacija v skupini Ac znatno zmanjšala, pri čemer je bila koncentracija tiobarbituričnih reaktivnih snovi (TBARS) 0,100 mg/kg, kar je 56-odstotno zmanjšanje v primerjavi s kontrolno skupino (0,227 mg/kg). To zmanjšanje poudarja učinkovitost EHC pri izboljšanju oksidativne stabilnosti mesa. Rezultati kažejo, da lahko imajo zgodnja aklimatizacija na vročinski stres in strategije genetske toplotne odpornosti ključno vlogo pri izboljšanju kakovosti in hranilne vrednosti mesa brojlerjev, kar ponuja trajnostno metodo za spopadanje z izzivi, ki jih v proizvodnji perutnine predstavljajo naraščajoče globalne temperature.

Ključne besede: termotoleranca; kakovost mesa; oksidativna stabilnost; brojler

References

Abbas G. Combating heat stress in laying hens a review. Pakistan J Sci 2021; 73(4): 633–55. doi: 10.57041/pjs.v73i4.365

Abdel-Moneim A-ME, Shehata AM, Khidr RE, et al. Nutritional manipulation to combat heat stress in poultry–A comprehensive review. J Therm Biol 2021; 98: 102915. doi: 10.1016/j.jtherbio.2021.102915

Abioja M, Abiona J. Impacts of climate change to poultry production in Africa: Adaptation options for broiler chickens. In: Filho WL, eds. African handbook of climate change adaptation. Berlin: Springer, 2021: 275–96. doi: 10.1007/978-3-030-42091-8_111-1

Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, Tiwari R, Yatoo MI, Bhatt P, Khurana SK. Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals 2019, 9(8):573. https://doi.org/10.3390/ani9080573

Ali AM, Dalab AS, Althnaian TA, Alkhodair KM, Al-Ramadan SY. Molecular investigations of the effect of thermal manipulation during embryogenesis on muscle heat shock protein 70 and thermotolerance in broiler chickens. Revi Bras Zootec 2022; 51: e20210011. doi: 10.37496/rbz5120210011

Ali S, Esmat A, Erasha A, Yasuda M, Alsafy M. Morphology and morphometry of the inner ear of the dromedary camel and their influence on the efficiency of hearing and equilibrium. Zoological Lett 2022; 8(1): 12. doi: 10.1186/s40851-022-00196-0

Alsafy MA, Abdellatif IA, El-Gendy SA, Abumandour MM, Noreldin A, Bassuoni NF. Analyzing the morphology and avian β-defensins genes (AvβD) expression in the small intestine of Cobb500 broiler chicks fed with sodium butyrate. BMC Vet Res 2024; 20(1): 434. doi: 10.1186/s12917-024-04253-y

Aravani VP, Sun H, Yang Z, et al. Agricultural and livestock sector's residues in Greece & China: comparative qualitative and quantitative characterization for assessing their potential for biogas production. Renew Sustain Energy Rev 2022; 154: 111821. doi: 10.1016/j.rser.2021.111821

Baéza E, Guillier L, Petracci M. Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16:100331. https://doi.org/10.1016/j.animal.2021.100331

Bartkovský M, Sopková D, Andrejčáková Z, Vlčková R, Semjon B, Marcinčák S, Bujňák L, Pospiech M, Nagy J, Popelka P. Effect of concentration of flaxseed (Linum usitatissimum) and duration of administration on fatty acid profile, and oxidative stability of pork meat. Animals 2022, 12(9):1087. https://doi.org/10.3390/ani12091087

Bejaoui B, Sdiri C, Ben Souf I, et al. physicochemical properties, antioxidant markers, and meat quality as affected by heat stress: a review. molecules 2023; 28(8): 3332. doi: 10.3390/molecules28083332

Benabdelmoumen D, Benmehel B, Farouk B, Miloud H. Effects of genotype and sex on lipid oxidation and fatty acid profile of chicken breast meat. Pak J Nutr 2016, 15:187. https://doi.org/10.3923/pjn.2016.187.193

Bengharbi Z, Dahmouni S, Benabdelmoumene D. Impact of both early-age acclimation and linseed dietary inclusion on fat deposition and fatty acids’ meat traits in heat-stressed broiler chickens. Journal of Advanced Veterinary and Animal Research 2021, 8(2):237. https://doi.org/10.5455/javar.2021.h508

Bengharbi Z, Dahmouni S, Mouats A, Petkova M, Halbouche M. Dietary linseed inclusion and early-age acclimation effects on carcass yield, organ development and thermal resistance of broilers in hot climate. Bulg J Agric Sci 2016b, 22(Suppl 1):34–41. https://www.agrojournal.org/22/01s-06.pdf

Bengharbi Z, Dahmouni S, Mouats A, Petkova M, Halbouche M. Physiological variations during a gradual six-hour simulated heat stress in early-age acclimated broilers fed linseed suPPlemented diet. Bulgarian Journal of Agricultural Science 2016a, 22(1):25–33. https://www.agrojournal.org/22/01s-05.pdf

Biswal J, Vijayalakshmy K, T. K B, Rahman H. Impact of heat stress on poultry production. Worlds Poult Sci J 2022, 78(1): 179–96. doi: 10.1080/00439339.2022.2003168

Catalán V, Frühbeck G, Gómez-Ambrosi J. Inflammatory and oxidative stress markers in skeletal muscle of obese subjects. In: del Moral AM, eds. Obesity. Amsterdam: Elsevier; 2018: 163–89. doi: 10.1016/B978-0-12-812504-5.00008-8

Cherian G. Hatching egg polyunsaturated fatty acids and the broiler chick. J Anim Sci Biotechnol 2022; 13(1): 98. doi: 10.1186/s40104-022-00757-5

El‐Gendy SA, Alsafy MA, Rutland CS, Ez Elarab SM, Abd‐Elhafeez HH, Kamal BM. Ossa cordis and os aorta in the one‐humped camel: Computed tomography, light microscopy and morphometric analysis. Microsc Res Tech 2023; 86(1): 53–62. doi: 10.1002/jemt.24256

Fan S, Yuan P, Li S, et al. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA. BMC Genom2023, 24(1): 434. doi: 10.1186/s12864-023-09503-1

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957, 226(1): 497–509.

Gheorghe A, Habeanu M, Ciurescu G, Lefter NA, Ropota M, Custura I, Tudorache M. Effects of dietary mixture enriched in polyunsaturated fatty acids and probiotic on performance, biochemical response, breast meat fatty acids, and lipid indices in broiler chickens. Agriculture 2022, 12(8):1120. https://doi.org/10.3390/agriculture12081120

Goel A, Ncho CM, Gupta V, Choi Y-H. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. Anim Nutr 2023; 13: 150–9. doi: 10.1016/j.aninu.2023.01.005

Guo Y, Balasubramanian B, Zhao Z-H, Liu W-C. Heat stress alters serum lipid metabolism of Chinese indigenous broiler chickens-a lipidomics study. Environ Sci Pollut Res 2021a; 28(9): 10707–17. doi: 10.1007/s11356-020-11348-0

Guo Y, Liao JH, Liang ZL, Balasubramanian B, Liu WC. Hepatic lipid metabolomics in response to heat stress in local broiler chickens breed (Huaixiang chickens). Vet Med Sci 2021b; 7(4): 1369–78. doi: 10.1002/vms3.462

Holland B, Welch A, Unwin I, Buss D, Paul A, Southgate D. McCance and Widdowson's the composition of foods: Royal Society of Chemistry; 1991.

Ibrahim N, Chantziaras I, Mohsin MAS, et al. Quantitative and qualitative analysis of antimicrobial usage and biosecurity on broiler and Sonali farms in Bangladesh. Prev Vet Med 2023; 217: 105968. doi: 10.1016/j.prevetmed.2023.105968

Jahan K, Paterson A, Spickett CM. Fatty acid composition, antioxidants and lipid oxidation in chicken breasts from different production regimes. Int J Food Sci Techol 2004; 39(4): 443–53. doi: 10.1111/j.1365-2621.2004.00799.x

Jîtcă G, Fogarasi E, Ősz B-E, et al. A simple HPLC/DAD method validation for the quantification of malondialdehyde in rodent’s brain. Molecules 2021; 26(16): 5066. doi: 10.3390/molecules26165066

Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97(10): 2499–574. doi: 10.1007/s00204-023-03562-9

Joseph JD, Ackman RG. Capillary column gas chromatographic method for analysis of encapsulated fish oils and fish oil ethyl esters: collaborative study. J AOAC Int 1992, 75(3): 488–506. doi: 10.1093/jaoac/75.3.488

Jung S, Nam KC, Jo C. Detection of malondialdehyde in processed meat products without interference from the ingredients. Food Chem 2016; 209: 90–4. doi: 10.1016/j.foodchem.2016.04.035

Kennedy GM, Lichoti JK, Ommeh SC. Heat stress and poultry: adaptation to climate change, challenges and opportunities for genetic breeding in Kenya. J Agricult Sci Technol 2022; 21(1): 49–61. doi: 10.4314/jagst.v21i1.6

Khan M, Niazi A, Arslan M, et al. Effects of selenium supplementation on the growth performance, slaughter characteristics, and blood biochemistry of naked neck chicken. Poult Sci 2023b, 102(3): 102420. doi: 10.1016/j.psj.2022.102420

Khan RU, Naz S, Ullah H, et al. Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim Biotechnol 2023; 34(2): 438–47. doi: 10.1080/10495398.2021.1972005

Kliphuis S, Manet MW, Goerlich VC, et al. Early-life interventions to prevent feather pecking and reduce fearfulness in laying hens. Poult Sci 2023; 102(8): 102801. doi: 10.1016/j.psj.2023.102801

Kumar M, Ratwan P, Dahiya S, Nehra AK. Climate change and heat stress: Impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J Therm Biol 2021; 97: 102867. doi: 10.1016/j.jtherbio.2021.102867

Li Z, Lei H, Jiang H, et al. Saturated fatty acid biomarkers and risk of cardiometabolic diseases: A meta-analysis of prospective studies. Front Nutr 2022, 9: 963471. doi: 10.3389/fnut.2022.963471

Madkour M, Salman FM, El-Wardany I, et al. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J Therm Biol 2022; 103: 103169. doi: 10.1016/j.jtherbio.2021.103169

Meteyake HT, Collin A, Bilalissi A, Dassidi N, Assion ME, Tona K. Naked neck gene and intermittent thermal manipulations during embryogenesis improve posthatch performance and thermotolerance in slow-growing chickens under tropical climates. Poult Sci 2023; 102(10): 102912. doi: 10.1016/j.psj.2023.102912

Muhlisin M, Utama DT, Lee JH, Choi JH, Lee SK. Effects of gaseous ozone exposure on bacterial counts and oxidative properties in chicken and duck breast meat. Korean J Food Sci Anim Res 2016; 36(3): 405. doi: 10.5851/kosfa.2016.36.3.405

Nayak N, Bhanja SK, Chakurkar EB, Sahu AR, Ashitha K, Shivasharanappa N, D’Mello AD. Impact of bioclimatic factors on physio-biochemical and molecular response of slow-growing poultry reared in tropics. Trop Anim Health Product 2023; 55(4): 253. doi: 10.1007/s11250-023-03668-3

Okrouhlá M, Stupka R, Čítek J, Šprysl M, Brzobohatý L. Effect of dietary linseed supplementation on the performance, meat quality, and fatty acid profile of pigs. Czech J Anim Sci 2013; 58(6): 279–88. doi: 10.17221/6826-CJAS

Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. doi: 10.3389/fvets.2023.1255520

Panpipat W, Chaijan M, Karnjanapratum S, et al. Quality characterization of different parts of broiler and Ligor hybrid chickens. Foods 2022; 11(13): 1929. doi: 10.3390/foods11131929

Qaid MM, Al-Mufarrej SI, Al-Garadi MA, Al-Abdullatif AA, Alqhtani AH, Alhotan RA, Alharthi AS, BaZeyad AY. Meat fatty acids profile including metabolic, qualitative, nutritional indices, and organoleptic evaluation as affected by Rumex nervosus leaves meal fortified broiler diets. Italian Journal of Animal Science 2023, 22(1):1050–66. https://doi.org/10.1080/1828051X.2023.2267604

Riecan M, Paluchova V, Lopes M, Brejchova K, Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol Therap 2022; 231: 107972. doi: 10.1016/j.pharmthera.2021.107972

Sağlam H, Seydİm AC. The effect of double roasting parameters on the physicochemical properties and sensory quality of Leblebi (a roasted chickpea snack). 2017.

SAS. SAS Statistical analysis systems user’s guide ‘2008 version 9.2. 2nd ed. In: SAS Institute I, Cary, NC; 2008.

Sukardi D, Hafizd JZ, Setiawan FF. Halal Certification standards for chicken slaughter in traditional markets. Al Hurriyah Jurnal Hukum Islam 2022; 7(2): 204–27. doi: 10.30983/alhurriyah.v7i2.4474

Taskaya A, Ozturk-Kerimoglu B, Serdaroglu M. Plum (Prunus domestica) extract acts as a natural antioxidant in minced sardine muscles during frozen storage. J Aquat Food Prod Technol 2023; 33(8): 1–14. doi: 10.1080/10498850.2023.2276839

Uddin M, Hossain M, Toma S, et al. Physicochemical properties and sensory evaluation of naked neck and non-descriptive deshi chicken meat. Saudi J Life Sci 2021, 6(7): 151–8.

Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10(8): 1266. doi: 10.3390/ani10081266

Wood AM, Linley PA, Maltby J, Baliousis M, Joseph S. The authentic personality: a theoretical and empirical conceptualization and the development of the Authenticity Scale. J Counsel Psychol 2008, 55(3):385. doi: 10.1037/0022-0167.55.3.385

Xiong Q, Zhang M, Wang T, et al. Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poult Sci 2020; 99(3): 1761–7. doi: 10.1016/j.psj.2019.11.013

Yahav S, McMurtry J. Thermotolerance acquisition in broiler chickens by temperature conditioning early in life—the effect of timing and ambient temperaturey. Poult Sci 2001, 80(12): 1662–6. doi: 10.1093/ps/80.12.1662

Zhang Y, Cao Z, Wang L, Dong B, Qi S, Xu X, Bao Q, Zhang Y, Xu Q, Chang G. Effects of linseed oil supplementation duration on fatty acid profile and fatty acid metabolism-related genes in the muscles of Chinese crested white ducks. Poultry Science 2023, 102(10):102896. https://doi.org/10.1016/j.psj.2023.102896

Zineb B, Djilali B, Said D, et al. Comparative Study Of Performance And Carcass Characteristics Of The Slow-Growing Naked Neck And The Commercial ISA Hubbard 15 Broiler Chickens. Journal of Survey in Fisheries Sciences 2024;11(2): 121–6. doi: 10.53555/sfs.v11i2.2206

Zou Y, Yang H, Li P, et al. Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poult Sci 2019; 98(4): 1925–33. doi: 10.3382/ps/pey502

Downloads

Published

2025-03-04

How to Cite

Dahmouni, S., Bengharbi, Z., Benabdelmoumene, D., El-Gendy, S. A., & Alsafy, M. A. (2025). ASSESSMENT OF MEAT OXIDATIVE STABILITY, NUTRITIONAL AND FATTY ACID COMPOSITIONS OF EARLY AGE ACCLIMATED AND GENETICALLY THERMORESISTANT BROILERS. Slovenian Veterinary Research, Early View. https://doi.org/10.26873/SVR-2114-2024

Issue

Section

Original Research Article

Most read articles by the same author(s)