EFFECTS OF SELENIUM NANOPARTICLES AND CHITOSAN ON MEAT QUALITY, LIPID PROFILE, TISSUE MINERAL CONTENT AND TIBIAL BONE MORPHOMETRY IN HEAT STRESSED BROILERS
DOI:
https://doi.org/10.26873/SVR-2101-2024Keywords:
selenium, nano-selenium, chitosan, muscle quality, lipid status, tibial bone, broiler, heat stressAbstract
This study aimed to assess the effects of selenium and selenium nanoparticles with chitosan on broiler chickens during heat stress. In this study, total 336 chicks were raised. These birds were split into seven groups, each with six sets of eight birds, depending on the treatments they received. There were two control groups: one with the regular diet (negative control) and another with the regular diet plus heat stress (positive control) known as A and B Groups respectively. The remaining groups were as follows: Group-C (Basal diet+0.3mg/kg selenium), Group-D (Basal diet + 0.3mg/kg nano selenium + heat stress), Group-E (basal diet+300mg/kg chitosan+heat stress), Group-F (basal diet+0.3mg/kg selenium+300mg/kg chitosan+ heat stress) and Group-G (0.3mg nano selenium + 300mg/kg chitosan/+basal diet + heat stress). The various parameters were analyzed, including drip loss, cooking loss, lipid profiles, mineral content, and bone characteristics was significantly improved in Group G, receiving nano selenium and chitosan under heat stress. Moreover, Group G showed higher selenium, calcium, and phosphorus content in breast muscle tissue, along with tibial bone characteristics such as weight, length, wall thickness, density, and medullary canal diameter as compared to group-B. Although weight/length index showed no significant differences, Group G demonstrated the highest Tibiotarsal Index (TTI) and Robusticity Index (RI). These findings suggest the beneficial effects of nano selenium and chitosan supplementation, particularly evident under heat stress conditions.
Učinki nanodelcev selena in hitozana na kakovost mesa, lipidni profil, vsebnost mineralov v tkivih in morfometrijo golenice pri toplotno obremenjenih brojlerjih
Izvleček: Namen raziskave je bil oceniti učinke selena in selenovih nanodelcev s hitozanom na piščance brojlerje v času toplotnega stresa. V tej študiji je bilo vzrejenih 336 piščancev. Razdeljeni so bili v sedem skupin, vsaka je vsebovala šest enot, v katerih je bilo nastanjenih po osem piščancev, odvisno od zdravljenja, ki so ga prejeli. Bili sta dve kontrolni skupini: ena z običajno prehrano (negativna kontrola) in druga z običajno prehrano in toplotnim stresom (pozitivna kontrola), imenovani skupini A in B. Druge skupine so bile: skupina C (osnovna prehrana + 0,3 mg/kg selena), skupina D (osnovna prehrana + 0,3 mg/kg nanoselena + toplotni stres), skupina E (osnovna prehrana + 300 mg/kg hitozana + toplotni stres), skupina F (osnovna prehrana + 0,3 mg/kg selena + 300 mg/kg hitozana + toplotni stres) in skupina G (0,3 mg nanoselena + 300 mg/kg hitozana/+ osnovna prehrana + toplotni stres). Analizirani so bili različni parametri, vključno z izgubo vode iz mesa, izgubo vode pri kuhanju, lipidnimi profili, vsebnostjo mineralov in značilnostmi kosti, ki so se v skupini G, ki je prejemala nanoselen in hitozan pod vročinskim stresom, znatno izboljšali. Poleg tega so bile pri skupini G v primerjavi s skupino B ugotovljena višja vsebnost selena, kalcija in fosforja v prsni muskulaturi piščancev ter boljše lastnosti golenice, kot so masa, dolžina, debelina stene, gostota in premer medularnega kanala. Čeprav indeks mase/dolžine ni pokazal bistvenih razlik, sta bila pri skupini G ugotovljena najvišja tibiotarzalni indeks (TTI) in indeks robustnosti (RI). Te ugotovitve kažejo na ugodne učinke dodajanja nanoselena in hitozana, ki so še posebej očitni v razmerah vročinskega stresa.
Ključne besede: selen; nanoselen; hitozan; kakovost mišic; stanje lipidov; golenica; brojlerji; toplotni stres
References
Ahmad R, Yu YH, Hsiao FS. Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals (Basel) 2022; 12(17): 2297. doi: 10.3390/ani12172297
Ahmadi M, Ahmadian A, Seidavi A. Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broilerchickens . Poult Sci J 2018; 6(1): 99–108. doi: 10.22069/psj.2018.13815.1276
Ashraf S, Zaneb H, Masood S. Influence of β-galacto-oligosaccharide on growth performance and components of intestinal barrier in broilers during heat stress. South Afr J Anim Sci 201; 47(5): 616–25. 10.4314/sajas.v47i5.4
Aviagen. Ross 308 broiler nutrition specifications. Huntsville: Aviagen, 2014. https://www.slideshare.net/abdelrahmanyousef/ross308-broiler-nutrition-specs
Bakhshalinejad R, Hassanabadi A, Swick RA. Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Anim Nutr 2019; 5(3): 256–63. doi: 10.1016/j.aninu.2019.03.003
Bami MK, Afsharmanesh M, Salarmoini M, Ebrahimnejad H. Effects of selenium-chitosan on growth performance, carcass traits, meat quality, and blood indices of broiler chickens. Livest Sci 2021; 250: 104562. 10.1016/j.livsci.2021.104562
Bami, M.K., et al., Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. J Trace Elem Med Biol 2022; 69: 126897. doi: 10.1016/j.jtemb.2021.126897
Boiago M, Borba H, Leonel FR, et al., Sources and levels of selenium on breast meat quality of broilers. Ciência Rural 2014; 44(9): 1692–8. 10.1590/0103-8478cr20131256
Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 2012; 91(10): 2532–9. doi: 10.3382/ps.2012-02160
Calvo L, Toldrá F, Rodríguez AI, López-Bote C, Rey AI. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs. Food Sci Nutr 2017; 5(1): 94–102. doi: 10.1002/fsn3.368
Chang Q, Cai H, Wei L, Lan R. Chitosan oligosaccharides alleviate acute heat stress-induced oxidative damage by activating ERK1/2-mediated HO-1 and GSH-Px gene expression in breast muscle of broilers. Poult Sci 2022; 101(1): 101515. doi: 10.1016/j.psj.2021.101515
Chang Q, Lu Y, Lan R. Chitosan oligosaccharide as an effective feed additive to maintain growth performance, meat quality, muscle glycolytic metabolism, and oxidative status in yellow-feather broilers under heat stress. Poul Sci 2020; 99(10): 4824–31. doi: 10.1016/j.psj.2020.06.071
Christensen LB. Drip loss sampling in porcine m. longissimus dorsi. Meat Sci 2003; 63(4): 469–77. doi: 10.1016/s0309-1740(02)00106-7
Dalia AM, Loh TC, Sazili AQ, Samsudin AA. Influence of bacterial organic selenium on blood parameters, immune response, selenium retention and intestinal morphology of broiler chickens. BMC Vet Res 2020; 16(1): 365. doi: 10.1186/s12917-020-02587-x
Dhawan G, Singh I, Dhawan U, KumarP. Synthesis and characterization of nanoselenium: a step-by-step guide for undergraduate students. J Chem Educat 2021. 98(9): p. 2982-2989. doi: 10.1021/acs.jchemed.0c01467
Dukare S, Mir NA, Mandal AB. A comparative study on the antioxidant status, meat quality, and mineral deposition in broiler chicken fed dietary nano zinc viz-a-viz inorganic zinc. J Food Sci Technol, 2021; 58(3): 834–43. doi: 10.1007/s13197-020-04597-x
Elkhateeb FSO, Ghazalah AA, Lohakare J, Abdel-Wareth AAA. Selenium nanoparticle inclusion in broiler diets for enhancing sustainable production and health. Sci Rep 2024; 14(1): 18557. doi: 10.1038/s41598-024-67399-7
Harash G, Richardson KC, Alshamy Z. Basic morphometry, microcomputed tomography and mechanical evaluation of the tibiotarsal bone of a dual-purpose and a broiler chicken line. PLoS One 2020; 15(3): e0230070. doi: 10.1371/journal.pone.0230070
Hartemann P, et al. Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Mater Today 2015; 18(3): 122–3. doi: 10.1016/j.mattod.2015.02.014
Honikel KO. Reference methods for the assessment of physical characteristics of meat. Meat Sci 1998; 49(4): 447–57. doi: 10.1016/s0309-1740(98)00034-5
Hu C, Li YI, Xiong L, Zhang HM, Song J, Xia MS. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 2012; 177(3/4): 204–10. doi: 10.1016/j.anifeedsci.2012.08.010
Iizuka, Y, Sakurai E, Tanaka Y. Effect of selenium on serum, hepatic and lipoprotein lipids concentration in rats fed on a high-cholesterol diet. Yakugaku Zasshi 2001; 121(1): 93–6. doi: 10.1248/yakushi.121.93
Kassim A, Ali AHH, Marwan T, Abdel-Wareth AAA. Selenium nanoparticles in rabbit nutrition. a review. SVU-Internat J Agricult Sci 2022; 4(1): 90–8. doi: 10.21608/svuijas.2022.117298.1171
Khajeh Bami M, Afsharmanesh M, Espahbodi M, Esmaeilzadeh E. Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. J Trace Elem Med Biol 2022; 69: 126897. doi: 10.1016/j.jtemb.2021.126897
Khan I, Zaneb H, Masood S, et al. Supplementation of selenium nanoparticles-loaded chitosan improves production performance, intestinal morphology, and gut microflora in broiler chickens. J Poult Sci 2022; 59(3): 272–81. doi: 10.2141/jpsa.0210026
Kim, H.J., et al., Effects of light intensity on growth performance, blood components, carcass characteristics, and welfare of broilers. J Anim Sci Technol 2022; 64(5): 985–96. doi: 10.5187/jast.2022.e47
KOCABAĞLI N., The effect of dietary phytase supplementation at different levels on tibial bone characteristics and strength in broilers. Turk J Vet Anim Sci 2001; 25(5): 797–802.
Kumar A, Prasad KS. Role of nano-selenium in health and environment. J Biotechnol 2021; 325: 152–63. doi: 10.1016/j.jbiotec.2020.11.004
Menon S, Agarwal H, Kumar V, Shanmugam. Biomemetic synthesis of selenium nanoparticles and its biomedical applications. In: Green synthesis, characterization and applications of nanoparticles. Amsterdam: Elsevier, 2019: 165-197.
Mir NA, Rafiq A, Kumar F, Singh V, Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. J Food Sci Technol 2017; 54(10): 2997–3009. doi: 10.1007/s13197-017-2789-z
Mohammad A, Ghazanfari S, Sharifi SD. Comparative effects of dietary organic, inorganic, and Nano-selenium complexes and rosemary essential oil on performance, meat quality and selenium deposition in muscles of broiler chickens. Livest Sci 2019; 226: 21–30. doi: 10.1016/j.livsci.2019.06.001
Monesh Babu J, Preetha S. Selenium nanoparticles and its application. Annal Roman Soc Cell Biol 2021; 25(3): 5964–74.
Naz S, Idris M, Khalique M. The activity and use of zinc in poultry diets. World Poult Sci J 2016; 72(1): 159–67. doi: 10.1017/S0043933915002755
Ndubuisi D, Daudu O, Abdulrashid M. The role of selenium in ameliorating the impact of heat stress on growth, hormones, minerals and tibia measurements of broiler chickens. Nigerian J Anim Product 2021; 48(4): 176–84. doi: 10.51791/njap.v48i4.3008
Noruzi H, Hassanabadi A, Golian A, Aziz-Aliabadi F. Effects of dietary calcium and phosphorus restrictions on growth performance, intestinal morphology, nutrient retention, and tibia characteristics in broiler chickens. Br Poult Sci 2023; 64(2): 231–41. doi: 10.1080/00071668.2022.2136510
Nuengjamnong C, Angkanaporn K. Efficacy of dietary chitosan on growth performance, haematological parameters and gut function in broilers. Ital J Anim Sci 2018; 17(2): 1–8. doi: 10.1080/1828051X.2017.1373609
Oliveira TFB, Rivera DFR, Mesquita FR, Braga H, E.M. Ramos EM, Bertechini AG. Effect of different sources and levels of selenium on performance, meat quality, and tissue characteristics of broilers. J Appl Poult Sci 2014; 23(1): 15–22. doi: 10.3382/japr.2013-00761
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(7): 751–60.doi: 10.1038/nnano.2007.387
Perić l, Milošević N, Žikić D, et al. Effect of selenium sources on performance and meat characteristics of broiler chickens. J Appl Poul Res 2009; 18(3): 403–9. doi: 10.3382/japr.2008-00017
Razdan A, Pettersson D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br J Nutr 1994;72(2): 277–88. doi: 10.1079/bjn19940029
Rehman H, Zaneb H, Masood S. Effect of Moringa oleifera leaf powder supplementation on pectoral muscle quality and morphometric characteristics of tibia bone in broiler chickens. Brazil J Poult Sci 2018; 20(4): 817–24. doi: 10.1590/1806-9061-2017-0609
Saeed AA, Sandhu MA, Khilji MS, et al. Effects of dietary chromium supplementation on muscle and bone mineral interaction in broiler chicken. J Trace Elem Med Biol 2017; 42: 25–9. doi: 10.1016/j.jtemb.2017.03.007
Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH, Sarir H. Nanoselenium supplementation of heat-stressed broilers: effects on performance, carcass characteristics, blood metabolites, immune response, antioxidant status, and jejunal morphology. Biol Trace Elem Res 2017; 178(1): 105–16. doi: 10.1007/s12011-016-0899-5
Samo, S.P., et al., Effect of Organic Selenium Supplementation in Diet on Gastrointestinal Tract Performance and Meat Quality of Goat. Pakistan J Zool 2018; 50(3): 995–1001. doi: 10.17582/journal.pjz/2018.50.3.995.1001
Sandercock DA, Nute GR, Hocking PM. Hocking, Quantifying the effects of genetic selection and genetic variation for body size, carcass composition, and meat quality in the domestic fowl (Gallus domesticus). Poult Sci 2009; 88(5): 923–31. doi: 10.3382/ps.2008-00376
Savaram Venkata RR, Bhukya P, Raju MVLN, Ullengala R. Effect of dietary supplementation of organic trace minerals at reduced concentrations on performance, bone mineralization, and antioxidant variables in broiler chicken reared in two different seasons in a tropical region. Biol Trace Elem Res 2021; 199(10): 3817–24. doi: 10.1007/s12011-020-02481-5
Schrauzer GN. The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 2003; 47(1): 73–112. doi: 10.1016/s1043-4526(03)47002-2
Seaman C, Moritz J, Falkenstein E, Van Dyke K, Casotti G, Klandorf H. Inosine ameliorates the effects of hemin-induced oxidative stress in broilers. Comp Biochem Physiol A Mol Integr Physiol 2008; 151(4): 670–5. doi: 10.1016/j.cbpa.2008.08.014.
Sell JL, ed. Nutrient requirements of poultry. 9th rev. ed. Washington: National Academy Press, 1994.
Shah M, Zaneb H, Masood S. Effect of single or combined supplementation of zinc and probiotics on muscle and bone characteristics and haematobiochemical profile in broilers. Vet Med 2020; 65(3): 134–42. doi: 10.17221/152/2019-VETMED
Shah SRA, Çetingül IS. Nutritional advances in production performance and product quality of poultry husbandry under heat stress. Online J Anim Feed Res 2022; 12(2): 53–65. doi: 10.51227/ojafr.2022.8
Shim MY, Karnuah AB, Mitchell AD, Anthony NB, Pesti GM, Aggrey SE. The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content, and bone ash in broilers. Poult Sci 2012; 91(8): 1790–5. doi: 10.3382/ps.2011-01968
Song D, King A. Effects of heat stress on broiler meat quality. World's Poult Sci J 2015; 71(4): 701–9. doi: 10.1017/S0043933915002421
Tahir SK, Yousaf MS, Rashid MA, et al. Supplemental chromium-loaded chitosan nanoparticles affect growth, serum metabolites and intestinal histology in broilers. S Afr J Anim Sci 2020; 49(6): 1072–2. doi: 10.4314/sajas.v49i6.11
Tayeb İ, Qader GK. Effect of feed supplementation of selenium and vitamin E on production performance and some hematological parameters of broiler. KSÜ Doğa Bil Derg 2012; 15(3): 46–56.
Trocino, A, et al. Impact of pre-slaughter transport conditions on stress response, carcass traits, and meat quality in growing rabbits. Meat Sci 2018; 146: 68–74. doi: 10.1016/j.meatsci.2018.07.035
Uyanga VA, Ejeromedoghene O, Lambo MT. Chitosan and chitosan‑based composites as beneficial compounds for animal health: impact on gastrointestinal functions and biocarrier application. J Funct Food 2023; 104: 105520. doi: 10.1016/j.jff.2023.105520
Wang J, Liu Z, He X, et al. Selenium deficiency induces duodenal villi cell apoptosis via an oxidative stress-induced mitochondrial apoptosis pathway and an inflammatory signaling-induced death receptor pathway. Metallomics 2018; 10(10): 1390–400. doi: 10.1039/c8mt00142a
Wang RH, Liang RR, Lin H. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult Sci 2017; 96(3): 738–46. doi: 10.3382/ps/pew329
Williams B, Waddington D, Murray DH, Farquharson C. Bone strength during growth: influence of growth rate on cortical porosity and mineralization. Calcif Tissue Int 2004; 74(3): 236–45. doi: 10.1007/s00223-002-2124-0
Yadav H, Malviya R, Kaushik N. Chitosan in biomedicine: a comprehensive review of recent developments. Carbohydr Polym Technol Appl 2024; 8: 100551. doi: 10.1016/j.carpta.2024.100551
Yan FF, Mohammed AA, Murugesan GR, Cheng HW. Effects of a dietary synbiotic inclusion on bone health in broilers subjected to cyclic heat stress episodes. Poult Sci 2019; 98(3): 1083–9. doi: 10.3382/ps/pey508
Yang T, Lee SY, Park KC, Park SH, Chung J, Lee S. The effects of selenium on bone health: From element to therapeutics. Molecules 2022; 27(2): 392. doi: 10.3390/molecules27020392
Yang Y, Meng FC, Wang P. Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. African J Biotechnol 2012; 11(12): 3031–6. doi: 10.5897/AJB11.3382
Zaboli G, Huang X, Feng X, Ahn DU. How can heat stress affect chicken meat quality?–a review. Poult Sci 2019; 98(3): 1551–6. doi: 10.3382/ps/pey399
Zhang ZY, Jia GQ, Zuo JJ, Zhang Y, Lei J, Ren L, Feng DY. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult Sci 2012; 91(11): 2931–7. doi: 10.3382/ps.2012-02255
Zhou X, Wang Y. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. J Poultry Science 2011; 90(3): 680–6. doi: 10.3382/ps.2010-00977
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 abdul haseeb

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.