• Mehdi Amiri Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
  • Majid Gholami-Ahangaran Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
  • Mohsen Jafarian Dehkordi Shahrekord Branch, Islamic Azad University, Shahrekord, Iran


To determine the aflatoxin effect on performance, and humoral and mucosal immunity, 240 one-day old chicks were divided into 4 equal groups. Treatment groups include Group 1: chickens that received a standard diet based on corn and soy as negative control, Group 2: chickens fed with a basal diet containing 3 ppm aflatoxin as positive control, Group 3: chickens fed with 0.25% Mycoad® in basal diet, and Group 4: chickens fed with diet containing 0.25% Mycoad® plus 3 ppm aflatoxin. All chickens continuously received diets from hatching until 28 days old. Growth indices, such as weight gain, feed consumption and food conversion rate, were determined weekly. At 28 days, all chickens were sacrificed. After blood sampling, serum was prepared to measure serum IgG titer against Newcastle disease vaccine using the HI method. Moreover, the heads were collected for nasaltracheal lavage for assaying IgA against infectious bronchitis vaccine in the mucosa of the respiratory tract. The measurement of mucosal IgA was carried out using the ELISA method with specific goat anti-chicken IgA. That results indicated that chickens that received aflatoxin demonstrated lower growth indices, and fewer serum IgG and mucosal IgA titers than others did, while performance and immune responses in chickens that received Mycoad® plus aflatoxin were significantly higher than chickens fed with aflatoxin alone. Overall, it seems that aflatoxin can affect mucosal immunity in the upper respiratory tract as well as performance and humoral immune responses. Supplementation of Mycoad® to diet contaminated with aflatoxin can reduce the adverse effects of aflatoxin on performance, as well as mucosal and systemic immune responses.

Key words: aflatoxin; chicken; immunity; Mycoad®



Da bi preučili vpliv aflatoksina na prirast in imunski odziv (sistemski in v sluznicah) piščancev, smo 240 enodnevnih piščancev razdelili na 4 enake skupine in jih od izvalitve do 28. dneva starosti hranili s 4 različnimi krmami. Skupina 1 je predstavljala negativno kontrolo (piščanci, krmljeni s standardno krmo na osnovi koruze in soje), skupina 2 je bila pozitivna kontrola (piščanci, krmljeni s standardno krmo, ki je vsebovala 3 ppm aflatoksina), v skupini 3 so bili piščanci, krmljeni s standardno krmo z dodatkom 0,25 % Mycoad®-a, v skupini 4 pa piščanci, krmljeni s krmo, ki je vsebovala 3 ppm aflatoksina in 0,25 % Mycoad®-a plus. Tedensko smo določali različne pokazatelje rasti, kot so povečanje telesne mase, poraba krme in njen izkoristek. Po 28 dneh smo vse živali žrtvovali. Z uporabo metode HI smo v serumu določili titer protiteles IgG proti virusu bolezni Newcastle ter v izpirku nosu in sapnika določili titer protiteles IgG proti cepivu kužnega bronhitisa. Izmerili smo tudi raven sluzničnih protiteles IgA z metodo ELISA s specifičnimi kozjimi protitelesi proti piščančjim protitelesom IgA. Rezultati so pokazali, da imajo piščanci, ki so prejeli aflatoksin, nižje indekse rasti in nižje titre tako serumskih protiteles IgG kot tudi sluzničnih protiteles IgA. Medtem pa sta bila prirast in imunski odziv pri piščancih, ki so prejeli poleg aflatoksina tudi Mycoad® plus, bistveno višja kot pri piščancih, krmljenih samo z aflatoksinom. Naši rezultati kažejo, da vsebnost aflatoksina v krmi piščancev vpliva na lokalni imunski odziv sluznic zgornjih dihalnih poti in na učinkovitost sistemskega imunskega odziva. Dodatek Mycoad® h krmi, onesnaženi z aflatoksini, lahko zmanjša neželene učinke aflatoksina na uspešnost cepljenj pri piščancih.

Ključne besede: aflatoksin; piščanci; imunost; Mycoad®

Author Biography

Mehdi Amiri, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

Poultry Diseases Department


(1) Bilgrami KS, Choudhary AK. Mycotoxins in preharvest contamination of agricultural crops. Mycotoxins in agriculture and food safty. New York: Marcel Dekker, 1998: 365.

(2) Yunus AW, Azzazi-Fazeli E, Bohm J. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: a review of history and contemporary issues. Toxins 2011; 3: 566–90.

(3) Herzallah SM. Aflatoxin B1 residues in eggs and flesh of laying hens fed aflatoxin B1 contaminated diet. Am J Agric Biol Sci 2013; 8: 156–61.

(4) Hoerr FJ. Mycotoxins. In: Swayne DE, Glisson JR, McDougald LR, eds. Disease of poultry. 13th ed. Ames: Wiley-Blackwell, 2013: 1271–87.

(5) Tedesco D, Steidler S, Galletti S, Tameni M, Sonzogni O, Ravarotto L. Efficacy of silymarinphospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chicks. Poultry Sci 2004; 83: 1839–43.

(6) Rangsaz N, Gholami-Ahangaran M. Evaluation of turmeric extract on performance indices impressed by induced aflatoxicosis in broiler chickens. Toxicol Ind Health 2011; 27: 956–60.

(7) Gholami-Ahangaran M, Zia-Jahromi N. Nanosilver effects on growth parameters in experimental aflatoxicosis in broiler chickens. Toxicol Ind Health 2013; 21: 121–5.

(8) Gholami-Ahangaran M, Rangsaz N, Azizi S. Evaluation turmeric (Curcuma longa) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis. Pharm Biol 2016; 54(5): 780–7.

(9) Mishra HN, Chitrangada D. A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 2003; 43: 245–64.

(10) Shotwell LO, Hesseltine CW, Stubblefield RD, Sorenson WG. Production of aflatoxin on rice. Appl Microbiol 1966; 14: 425–28.

(11) National Research Council. Nutrient requirement of poultry. 9th rev. ed. Washington: National Academy Press, 1994: 80–2.

(12) King DJ. Avian paramyxovirus type 1 from pigeons: isolate characterization and pathogenicity after chicken or embryo passage of selected isolates. Avian Dis 1996; 40: 707–14.

(13) Tamura S, Samegai Y, Kurata H, et al. Enhancement of protective antibody response against influenza virus infection by cholera toxin B subunit inoculated intranasally with influenza vaccine. Vaccine 1989; 7: 257–62.

(14) Takada A, Kida H. Protective immune response of chickens against Newcastle disease, induced by the intranasal vaccination with inactivated virus. Vet Microbiol 1996; 50: 17–25.

(15) Gholami-Ahangarn M. Assaying immunoglobulin A in mucosa of respiratoy tract following administration of infectious bronchitis vaccine in broiler chickens. Iranian J Vet Microbiol 2011; 7: 57–62 (In Persian).

(16) Gelb JJ, Nix WA, Gellman SD. Infectious bronchitis virus antibodies in tears and their relationship to immunity. Avian Dis 1998; 42: 364–74.

(17) Thompson G, Mohammed H, Buman B, Naqi S. Systemic local antibody response to infectious bronchitis virus in chickens inoculated with infectous bursal disease virus and control chickens. Avian Dis 1997; 41: 519–27.

(18) SAS Institute. SAS users guide: statistics. 6th version. Cary: SAS Institute Inc., 2001: 280.

(19) Huff WE, Kubena LF, Harvey RB, Corrier DE, Mollenhauer HH. Progression of aflatoxicosis in broiler chickens. Poultry Sci 1986: 65: 891–9.

(20) Harvey RB, Kubena LF, Elissalde MH, Phillips TD. Efficacy of zeolitic ore compounds on the toxicity of aflatoxin to growing broiler chickens. Avain Dis 1993; 37: 67–73.

(21) Abdel-Wahhab MA, Nada SA, Amra HA. Effect of aluminosilicates and bentonite on aflatoxin-induced developmental toxicity in rat. J Appl Toxicol 1999; 19: 199–204.

(22) Chabra JH., Peters RW. Humoral antibody response and assessment of protection following primary vaccination of chickens with maternally derived antibody against avian infectious bronchitis virus. Res Vet Sci 1985; 38: 14–21.

(23) Azzam AH, Gabal MA. Aflatoxin and immunity in layer hens. Avian Pathol 1998; 27: 570–7.

(24) Arulmozhi A, Koshy V. Aflatoxin B1 induced pathomorphological changes in lymphoid organs of broilers. Indian J Vet Pathol 2011; 35: 177–9.

(25) Ibrahim IK, Shareef AM, Al-Joubory KMT. Ameliorative effects of sodium bentonite on phagocytosis and Newcastle disease antibody formation in broiler chickens during aflatoxicosis. Res Vet Sci 2000; 69: 119–22.

(26) Gholami-Ahangaran M, Zia-Jahromi N. Effect of nanosilver on blood parameters in chickens having aflatoxicosis. Toxicol Ind Health 2014; 30: 192–6.

(27) Giambrone JJ, Ewert DL, Wyatt RD, Edison CS. Effect of aflatoxin on the humoral and cell mediated immune systems of the chicken. Am J Vet Res 1978; 39: 305–8.

(28) Pasha TN, Farooq MU, Khattak FM, Jabbar MA, Khan AD. Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbents in diets for broiler chickens. Anim Feed Sci Tech 2007; 132: 103–10.

(29) Kouwenhoven B. Newcastle disease. In: Ferran JB, McNulty MS, eds. Virus infections of birds. St. Louis: Elsevier Science, 1993: 341–61.

(30) Tessari ENC, Oliveira CAF, Cardoso ALSP, Ledoux DR, Rottinghaus GE. Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. Br Poultry Sci 2006; 47: 357–64.


Additional Files



How to Cite




Original Research Article