HIGH DOSES OF IVERMECTIN CAUSE TOXIC EFFECTS AFTER SHORTTERM ORAL ADMINISTRATION IN RATS
DOI:
https://doi.org/10.26873/SVR-2069-2024Keywords:
ivermectin, toxicity, SARS-CoV-2, cytochrome, P-450, P-gp, histopathological changes, ratsAbstract
The anthelmintic macrocyclic lactones (MLs) are the most important endectocides in modern pharmacotherapy of parasitic infections. However, during the COVID 19 pandemic, ivermectin was used in humans against infection with the SARS-CoV-2 virus in doses significantly higher than the approved antiparasitic doses. This kind of application was created solely on the basis of in vitro tests, and is not officially approved in any country in the world. Therefore, we conducted a study on rats treated orally with 0.6, 1.2, 2.4 and 4.8 mg/kg of ivermectin for 5 days. Based on our investigation, ivermectin at the doses used in humans against the SARS-Co-2 virus (3, 6, 12 and 24 times higher than the antiparasitic dose 0.2mg/kg), causes changes in red blood cell counts and increases the levels of liver enzymes without visible clinical symptoms. Histopathological changes were recorded in the liver, kidneys and testicles of rats, and the highest dose tested led to bleeding in the brain tissue. Obviously, ivermectin somewhat increases concentration of the enzyme P-450 isoform 3A4, whose substrate it is, but the highest tested dose reduces its concentration in plasma to the control level. Notably, the concentrations of ivermectin recorded in plasma of treated rats, indicate that even high doses do not reach the in vitro IC50 value of ivermectin for SARS-CoV-2 reported in the literature. On the other hand, the concentrations of ivermectin in the brain approach the values that can manifest extremely toxic effects described in humans.
Veliki odmerki ivermektina povzročajo toksične učinke pri podganah po kratkotrajnem peroralnem dajanju
Izvleček: Protiglivični makrociklični laktoni (ML) so najpomembnejše učinkovine v sodobni farmakoterapiji parazitskih okužb. Vendar so med pandemijo covida-19 pri ljudeh proti okužbi z virusom SARS-CoV-2 uporabljali bistveno višje odmerke ivermektina od odobrenih antiparazitičnih odmerkov. Takšna uporaba je bila ustvarjena izključno na podlagi testov in vitro, vendar ni bila uradno odobrena v nobeni državi na svetu. Zato smo izvedli študijo na podganah, ki smo jih 5 dni peroralno zdravili z 0,6, 1,2, 2,4 in 4,8 mg ivermektina na kg telesne teže. Naša preiskava je pokazala, da ivermektin v povišanih odmerkih, ki se uporabljajo pri ljudeh proti virusu SARS-CoV-2 (3-, 6-, 12- in 24-krat večjih od antiparazitskega odmerka 0,2 mg/kg), povzroča spremembe v številu eritrocitov in zvišuje raven jetrnih encimov brez vidnih kliničnih simptomov. Histopatološke spremembe smo zabeležili v jetrih, ledvicah in testisih podgan, največji testirani odmerek pa je povzročil krvavitev v možganskem tkivu. Znano je, da ivermektin kot substrat nekoliko poveča koncentracijo encima P-450 izoforma 3A4, vendar največji testirani odmerek zmanjša njegovo koncentracijo v plazmi na kontrolno raven. Koncentracije ivermektina, zabeležene v plazmi zdravljenih podgan, kažejo, da tudi visoki odmerki ne dosežejo in vitro vrednosti IC50 ivermektina za SARS-CoV2, ki je navedena v literaturi. Po drugi strani pa se koncentracije ivermektina v možganih približujejo vrednostim, ki lahko povzročijo izjemno toksične učinke, opisane pri ljudeh.
Ključne besede: ivermektin; toksičnost; SARS-CoV-2; citokrom P-450; P-gp; histopatološke spremembe; podgane
References
1. Prichard R, Ménez C, Lespine A. Moxidectin and the avermectins: consanguinity but not identity. Int J Parasitol Drugs Drug Resist 2012; 2: 134–53. doi: 10.1016/j.ijpddr.2012.04.001 DOI: https://doi.org/10.1016/j.ijpddr.2012.04.001
2. Siegmund OH, ed. The Merck veterinary manual. 5th ed. Rathway: Merck, 1979.
3. Trailović SM, Varagić VM. The effect of ivermectin on convulsions in rats produced by lidocaine and strychnine. Vet Res Commun 2007; 31(7): 863–72. doi: 10.1007/s11259-007-0050-3 DOI: https://doi.org/10.1007/s11259-007-0050-3
4. Trailovic SM, Ivanovic SR, Varagić VM. Ivermectin effects on motor coordination and contractions of isolated rat diaphragm. Res Vet Sci 2011; 91(3): 426–33. doi: 10.1016/j.rvsc.2010.09.016 DOI: https://doi.org/10.1016/j.rvsc.2010.09.016
5. Trailovic SM, Nedeljkovic JT. Central and peripheral neurotoxic effects of ivermectin in rats. J Vet Med Sci 2011; 73(5): 591–99. doi: 10.1292/jvms.10-0424 DOI: https://doi.org/10.1292/jvms.10-0424
6. Edwards G. Ivermectin: does P-glycoprotein play a role in neurotoxicity? Filaria J 2003; 2(Suppl. 1): S8. doi: 10.1186/1475-2883-2-S1-S8 DOI: https://doi.org/10.1186/1475-2883-2-S1-S8
7. Rendic SP. Metabolism and interactions of Ivermectin with human cytochrome P450 enzymes and drug transporters, possible adverse and toxic effects. Arch Toxicol 2021; 95(5):1535–46. doi: 10.1007/s00204-021-03025-z DOI: https://doi.org/10.1007/s00204-021-03025-z
8. Buonfrate D, Chesini F, Martini D, et al. High-dose ivermectin for early treatment of COVID-19 (COVER study): a randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial. Int J Antimicrob Agents 2022; 59(2): 106516. doi: 10.1016/j.ijantimicag.2021.106516 DOI: https://doi.org/10.1016/j.ijantimicag.2021.106516
9. Temple C, Hoang R, Hendrickson RG. Toxic Effects from Ivermectin Use Associated with Prevention and Treatment of Covid-19. N Engl J Med 2021; 385(23): 2197–8. doi: 10.1056/NEJMc2114907 DOI: https://doi.org/10.1056/NEJMc2114907
10. Collins AB, Zhao L, Zhu Z, et al. Impact of COVID-19 on male fertility. Urology 2022; 164: 33–9. doi: 10.1016/j.urology.2021.12.025 DOI: https://doi.org/10.1016/j.urology.2021.12.025
11. Whelan M, Kinsella B, Furey A, et al. Determination of anthelmintic drug residues in milk using ultra high-performance liquid chromatography-tandem mass spectrometry with rapid polarity switching. J Chromatogr A 2010; 1217(27): 4612–22. doi: 10.1016/j.chroma.2010.05.007 DOI: https://doi.org/10.1016/j.chroma.2010.05.007
12. Simunovic S, Jankovic S, Baltic T, et al. Histamine in canned and smoked fishery products sold in Serbia. Meat Technol 2019; 60(1): 8–16. doi: 10.18485/meattech.2019.60.1.2 DOI: https://doi.org/10.18485/meattech.2019.60.1.2
13. Jones BJ, Roberts DJ. The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 1968; 20(4): 302–4. doi: 10.1111/j.2042-7158.1968.tb09743.x DOI: https://doi.org/10.1111/j.2042-7158.1968.tb09743.x
14. Brunton LL, Chabner BA, Knollmann BC. Goodman and Gilman's the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill Education, 2011: 1456-7.
15. Riviere JE, Papich MG. Veterinary pharmacology and therapeutics. 10th ed. Hoboken: Wiley-Blackwell, 2018: 1101–27.
16. Lankas GR, Gordon LR. Toxicology. In: Campbell WC, ed. Ivermectin and abamectin. New York: Springer, 1989: 89–112. DOI: https://doi.org/10.1007/978-1-4612-3626-9_6
17. Oscanoa TJ, Amado J, Romero-Ortuno R, Carvajal A. Hepatic disorders associated with the use of Ivermectin for SARS-CoV-2 infection in adults: a pharmacovigilance study in VigiBase. Gastroenterol Hepatol Bed Bench. 2022; 15(4): 426–9. doi: 10.22037/ghfbb.v15i4.2383
18. Dong Z, Xing SY, Zhang JY, Zhou XZ. 14-Day repeated intraperitoneal toxicity test of ivermectin microemulsion injection in Wistar rats. Front Vet Sci 2020; 7: 598313. doi: 10.3389/fvets.2020.598313 DOI: https://doi.org/10.3389/fvets.2020.598313
19. Utu-Baku AB. Effect of therapeutic and toxic doses of ivermectin (Mectizan) on total serum proteins and hepatic enzymes of Wistar albino rats. Int J Biol Chem 2009; 3(4): 142–7. doi: 10.3923/ijbc.2009.142.147 DOI: https://doi.org/10.3923/ijbc.2009.142.147
20. Burchard GD, Kubica T, Tischendorf FW, Kruppa T, Brattig NW. Analysis of renal function in onchocerciasis patients before and after therapy. Am J Trop Med Hyg. 1999; 60(6): 980-6. doi: 10.4269/ajtmh.1999.60.980 DOI: https://doi.org/10.4269/ajtmh.1999.60.980
21. GabAllh M, El-mashad A, Amin A, Darweish M. Pathological studies on effects of ivermectin on male and female rabbits. Benha Vet Med J 2017; 32(1): 104–12. doi: 10.21608/bvmj.2017.31162 DOI: https://doi.org/10.21608/bvmj.2017.31162
22. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787. doi: 10.1016/j.antiviral.2020.104787 DOI: https://doi.org/10.1016/j.antiviral.2020.104787
23. Geyer J, Gavrilova O, Petzinger E. Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp- deficient knockout mice. J Vet Pharmacol Ther 2009; 32(1): 87–96. doi: 10.1111/j.1365-2885.2008.01007.x DOI: https://doi.org/10.1111/j.1365-2885.2008.01007.x
24. Westerloo van DJ, Landman GW, Prichard R, Lespine A, Visser LG. Persistent coma in Strongyloides hyperinfection syndrome associated with persistently increased ivermectin levels. Clin Infect Dis 2014; 58(1): 143–4. doi: 10.1093/cid/cit656 DOI: https://doi.org/10.1093/cid/cit656
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vladimir Marjanović, Dragana Medić, Djordje S. Marjanović, Nenad Andrić, Miloš Petrović, Jelena Francuski Andrić, Milena Radaković, Darko Marinković, Vanja Krstić, Saša M. Trailović

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.