REDISCOVERING PHAGE THERAPY: PROMISING APPROACH FOR COMBATING ANTIMICROBIAL RESISTANCE
DOI:
https://doi.org/10.26873/SVR-2063-2024Keywords:
antimicrobial resistance, bacteriophage, phage therapyAbstract
Antimicrobial resistance (AMR) is a concerning public health threat which affects human and animal health as well as the environment. The rapid spread of bacterial strains resistant to clinically used antibacterials necessitates the exploration and utilization of different treatment options. Phage therapy, the use of bacterial viruses – bacteriophages – to treat bacterial infections, has gained renewed interest as an aid in address-ing AMR. As we outline in this editorial, the introduction and widespread use of phage therapy in human and veterinary medicine faces regulatory challenges. However, the recent adoption of new guidelines and other regulatory develop-ments in this area will facilitate the progress of phage therapy.
Obujanje fagne terapije: obetaven pristop za boj s protimikrobno odpornostjo
Protimikrobna odpornost (AMR) predstavlja resno grožnjo javnemu zdravju in vpliva tako na zdravje ljudi in živali kot na okolje. Hitro širjenje bakterijskih sevov, ki so odporni na klinično uporabljane protibakterijske učinkovine, zahteva raziskovanje in uporabo drugačnih možnosti zdravljenja. Fagna terapija, uporaba bakterijskih virusov – bakteriofagov – za zdravljenje bakterijskih okužb, je pridobila ponovno zanimanje kot pomoč pri reševanju problema protimikrobne odpornosti. Kot opisujemo v tem uvodniku, se uvedba in široka uporaba fagne terapije v humani in veterinarski medicini sooča z regulatornimi izzivi, vendar pa bo nedavno sprejetje novih smernic in razvoj drugih regulatornih predpisov na tem področju olajšal napredek zdravljenja s fagi.
Ključne besede: protimikrobna odpornost; bakteriofagi; zdravljenje s fagi
References
1. Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial an-timicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399(10325): 629–55. doi: 10.1016/S0140-6736(21)02724-0
2. de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLOS Med 2016; 13(11): e1002184. doi: 10.1371/journal.pmed.1002184
3. O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. London: Review on Animicrobial Resistance, 2014. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (14. 6. 2024)
4. Cully M. Public health: the politics of antibiotics. Nature 2014; 509(7498): S16–7. doi: 10.1038/509S16a
5. Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics (Basel) 2020; 9(12): 918. doi: 10.3390/antibiotics9120918
6. Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 2004; 54(2): 321–32. doi: 10.1093/jac/dkh332
7. Šumonja I, Kotnik T. Skin dysbiosis in atopic dogs: is phage therapy an alternative to antibiotics? Slov Vet Res, doi: 10.26873/SVR-1880-2024 (ahead of print)
8. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage 2011; 1(2): 111–4. doi: 10.4161/bact.1.2.14590
9. Ibrahim MM, Elsaied EI, Abdelaal SF, Bayoumi MA. Superbugs and re-cent controlling approaches: a mini review. Slov Vet Res 2021; 58(sup-pl. 24): 197–207. doi: 10.26873/SVR-1440-2021
10. Chanishvili N. Phage therapy—history from twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res 2012; 83: 3–40. doi: 10.1016/B978-0-12-394438-2.00001-3
11. Summers WC. The strange history of phage therapy. Bacteriophage 2012; 2(2): 130–3. doi: 10.4161/bact.20757
12. European Medicines Agency. Guideline on quality, safety and efficacy of veterinary medicinal products specifically designed for phage ther-apy. Amsterdam: European medicine agency, 2023; 31:1–35. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-safety-and-efficacy-veterinary-medicinal-products-specifically-designed-phage-therapy_en.pdf (14. 6. 2024)
13. European Directorate for the Quality of Medicines & HealthCare. New general chapter on phage therapy medicinal products (5.31) adopt-ed and prepublished on the EDQM website . Strasbourg: Council of Europe, 2024. https://www.edqm.eu/en/w/new-general-chapter-on-phage-therapy-medicinal-products-5.31-adopted-and-pre-published-on-the-edqm-website (22. 5. 2024)
14. Pirnay JP, Verbeken G, Ceyssens PJ, et al. The magistral phage. Viruses 2018; 10(2): 64. doi: 10.3390/v10020064
15. Pirnay JP, Blasdel BG, Bretaudeau L, et al. Quality and safety require-ments for sustainable phage therapy products. Pharm Res 2015; 32(7): 2173–9. doi: 10.1007/s11095-014-1617-7
16. Nagel T, Musila L, Muthoni M, et al. Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Curr Opin Virol 2022; 53: 101208. doi: 10.1016/j. coviro.2022.101208
17. Łobocka M, Dąbrowska K, Górski A. Engineered bacteriophage thera-peutics: rationale, challenges and future. BioDrugs 2021; 35(3): 255–80. doi: 10.1007/s40259021-00480-z
18. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins – application approaches. Curr Med Chem 2015; 22(14): 1757–73. doi: 10.2174/0929867322666150209152851
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vida Štilec *, Martina Durcik, Matjaž Peterka
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.