MORPHOMETRIC ANALYSIS OF THE MANDIBULA IN SHEEP, GOAT AND RABBIT

Authors

  • Bahri Evcim * Sıtkı Koçman University Muğla Milas Veterinary Faculty Department of Anatomy, Turkey, bahrievcim@mu.edu.tr
  • Mehmet Erkut Kara Sıtkı Koçman University Muğla Milas Veterinary Faculty Department of Anatomy, Turkey

DOI:

https://doi.org/10.26873/SVR-2046-2024

Keywords:

mandible, anatomy, measurements, animal models, experimental oral surgery

Abstract

Understanding the morphological and morphometric properties of the mandible is crucial for the selection of an appropriate animal model for applications including implants, screws, prostheses, or bone defects. The purpose of this study is to present morphological data concerning the geometrical properties of the mandible in rabbits, sheep, and goats, which are used as models in experimental oral surgery. Length and height measurements of the mandibles were made on x-ray images of the mandibles. The cortical thicknesses and inner-outer diameters were also measured on the CT sectional images. In comparison to ruminants, the mandibular canal in rabbits is relatively shorter. In rabbits, the mental foramen is positioned caudally and closer to the molar teeth, while in sheep and goats, it is located rostrally and closer to the incisive teeth. In addition, the incisive roots are very extended and curved in rabbits and extend to the caudal border of the diastema. In ruminants, the incisive tooth roots are shorter and terminate close to the rostral border of the diastema, and there is a wider working area. Sheep and goats have wider and thicker bones in the rostral, intermediary and caudal regions of the mandible. The ramus region of rabbits has a thin bone structure, which makes it difficult to apply screws and other devices. The lateral side has a thicker cortical bone towards the rostral of the rabbit mandible, while the medial side is thicker in ruminants. The morphologic and geometric data of the mandible may support a study with critical size defects and screw, plate, or other implantations in rabbits and small ruminants to avoid problems or mistakes during experimental oral surgery. Also, the supplementary files can be used by researchers to investigate mandible x-ray images and CT sections of that animal species, as well as sections in different planes based on the intended position during pre-operative planning.

Morfometrična analiza spodnje čeljustnice pri ovci, kozi in kuncu

Izvleček: Razumevanje morfoloških in morfometričnih lastnosti spodnje čeljustnice je ključno za izbiro ustreznega živalskega modela za uporabo, vključno z vsadki, vijaki, protezami ali kostnimi defekti. Namen študije je predstaviti morfološke podatke o geometričnih lastnostih spodnje čeljustnice pri kuncih, ovcah in kozah, ki se uporabljajo kot modeli v eksperimentalni oralni kirurgiji. Meritve dolžine in višine čeljusti so bile opravljene na rentgenskih posnetkih spodnje čeljustnice. Debeline kompaktne kostnine ter notranji in zunanji premeri so bili izmerjeni tudi na CT-posnetkih prereza. V primerjavi s prežvekovalci je čeljustni kanal pri kuncih relativno krajši. Pri kuncih je bradna odprtina postavljena kavdalno in bližje molarnim zobem, medtem ko je pri ovcah in kozah postavljena rostralno in bližje sekalcem. Poleg tega so korenine sekalcev pri kuncih zelo podaljšane in ukrivljene ter segajo do kavdalnega roba diasteme. Pri prežvekovalcih so korenine sekalcev krajše in se končajo blizu rostralnega roba diasteme, delovno območje pa je širše. Ovce in koze imajo širše in debelejše kosti v rostralnem, vmesnem in kavdalnem področju spodnje čeljustnice. Področje ramusa spodnje čeljustnice ima pri kuncih tanko kostno strukturo, kar otežuje uporabo vijakov in drugih pripomočkov. Stranski del ima debelejšo kortikalno kost proti rostralnemu delu kunčje spodnje čeljustnice, medtem ko je medialna stran pri prežvekovalcih debelejša. Morfološki in geometrijski podatki o spodnji čeljusti lahko podpirajo študijo z defekti kritične velikosti in implantacijo vijakov, ploščic ali drugih pripomočkov pri kuncih in malih prežvekovalcih, da bi se izognili težavam ali napakam med eksperimentalno oralno kirurgijo. Prav tako lahko raziskovalci med načrtovanjem pred operacijo dodatne datoteke uporabijo za raziskovanje rentgenskih posnetkov spodnje čeljustnice in CT-rezine teh živalskih vrst ter rezin v različnih ravninah glede na predvideni položaj.

Ključne besede: spodnja čeljustnica; anatomija; meritve; živalski modeli; eksperimentalna oralna kirurgija

References

Abu-Serriah M, Kontaxis A, Ayoub A, Harrison J, Odel E, Barbenel J. Mechanical evaluation of mandibular defects reconstructed using osteogenic protein-1 (rhOP-1) in a sheep model: a critical analysis. Int J Oral Maxillofac Surg 2005; 34: 287–93. doi: 10.1016/j.ijom.2004.09.008

Alshehri F, Alshehri M, Sumague T, et al. Evaluation of peri-implant bone grafting around surface-porous dental implants: an in vivo study in a goat model. Materials 2019; 12(21): 3606. doi: 10.3390/ma12213606

Alvites RD, Branquinho MV, Sousa AC, et al. Small ruminants and its use in regenerative medicine: recent works and future perspectives. Biology (Basel) 2021; 10: 249 doi: 10.3390/biology10030249

An YH, Draughn RA. Mechanical Testing of Bone and the Bone-Implant Interface.Boca Raton: CRC Press, 1999. doi: 10.1201/9781420073560

Arsan B. Cone beam computed tomography analysis of mandibular inferior cortical thickness and bone texture in cemento-osseous dysplasia. Oral Surg Oral Med Pathol Oral Radiol 2022; 134(1): 110–8. doi: 10.1016/j.oooo.2022.02.008

Bavitz JB, Harn SD, Hansen CA, Lang M. An anatomical study of mental neurovascular bundle-implant relationships. Int J Oral Maxillofac Implants 1993; 8(5): 563–7.

Borie E, Calzzani R, Dias FJ, Fuentes R, Salamanca C. Morphometry of rabbit anatomical regions used as experimental models in implantology and oral surgery. Biomed Res(India) 2017; 28(12): 5468–72

Bottogisio M, Coman C, Lovati BA. Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections. Journal of Medical Microbiology 2019; 68: 506–37 DOI 10.1099/jmm.0.000952

Bulut T, Durmus E, Mihmanlı A, Dolanmaz D, Kalaycı A, Sağlam H. Distracted mandible does not reach the same strength as normal mandible in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114(Suppl. 5): S140–5. doi: 10.1016/j.oooo.2011.09.024

Campillo VE, Langonnet S, Pierrefeu A, Chaux–Bodard AG. Anatomic and histological study of the rabbit mandible as an experimental model for wound healing and surgical therapies. Lab Anim 2014; 48(4): 273–7. doi: 10.1177/0023677214540635

Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 2007; 28(29): 4240–50. doi: 10.1016/j.biomaterials.2007.06.023

Carvalho PH, Saavedra MSFA, Ballester RY, Luz JGC. Biomechanical evaluation of the sheep mandible as a model for studying fixation methods. 2018; 36(3): 926–30. doi: 10.4067/S0717-95022018000300926

Cheng G, Li Z, Wan Q, Lv K, Li D, Xing X, Li Z. A novel animal model treated with tooth extraction to repair the full-thickness defects in the mandible of rabbits. J Surg Res 2015; 94(2): 706–16. doi: 10.1016/j.jss.2014.11.010

Cornick–Seahorn, JL. Veterinary anesthesia. Woburn: Butterworth–Heinemann, 2000.

Corte GM, Hünigen H, Richardson KC, Niehues SM, Plendl J. Cephalometric studies of the mandible, its masticatory muscles and vasculature of growing Göttingen Minipigs-A comparative anatomical study to refine experimental mandibular surgery. PLoS One. 2019; 25; 14(4): e0215875. doi: 10.1371/journal.pone.0215875.

Decaup PH, Couture C, Garot E. Is the distribution of cortical bone in the mandibular corpus and symphysis linked to loading environment in modern humans? A systematic review. Arch Oral Biol 2023; 152: 105718. doi: 10.1016/j.archoralbio.2023.105718

Dyce K, Sack W, Wensing CJG. Veteriner Anatomi Konu Anlatımı ve Atlas. 4, 13987, R. Amsterdam: Elsevier, 2018.

Elovic RP, Hipp JA, Hayes WC. A Method for measuring the structural properties of the rat mandible. Arch Oral Biol 1994; 39(12): 1029–33. doi: 10.1016/0003-9969(94)90054-x

Flecknell, P. Laboratory animal anaesthesia. London: Elsevier , 2009.

Frosch S, Buchhorn GH. Considerations on the animal model and the biomechanical test arrangements for assessing the osseous integration of orthopedic and dental implants. MethodsX 2021; 8: 101352. doi: 10.1016/j.mex.2021.101352

Gandur IV, Walton VT, Lobato PC, Luaces VL, Céspedes MVM. Mandible measurements and dental midline deviation after alveolar nerve transection in growing rabbits. Int J Morphol 2011; 29(1): 52–6. doi: 10.4067/S0717-95022011000100008

Gencer RC, Ozel A, Uckan IS, Bilateral sagittal split ramus osteotomy using a conventional osteotome-hammer and a magnetic mallet device: an in vitro comparison. Eur Rev Med Pharmacol Sci 2023; 27 (Suppl. 4): 58–65. doi: 10.26355/eurrev_202307_32745

Gomes PP, Filho RG, Mazzonetto R, Evaluation of the bending strength of rigid internal fixation with absorbable and metallic screws in mandibular ramus sagittal split osteotomy – in vitro study. Pesqui Odontol Bras 2003;17(3): 267–72. doi:10.1590/S1517-74912003000300012

Halstead P, Collins P, Isaakidou V. Sorting the sheep from the goats: morphological distinctions between the mandibles and mandibular teeth of adult ovis and capra. J Archaeol Sci 2002; 29(5): 545–53 doi: 10.1006/jasc.2001.0777

Hsu JT, Chen YJ, Ho JT, et al. A comparison of micro-ct and dental ct in assessing cortical bone morphology and trabecular bone microarchitecture. PLoS One 2014; 9(9): e107545. doi: 10.1371/journal.pone.0107545

Jiang GZ, Matsumoto H, Hori M, et al. Correlation among geometric, densitometric, and mechanical properties in mandible and femur of osteoporotic rats. J Bone Miner Metab 2008; 26(2): 130–7. doi: 10.1007/s00774-007-0811-7

Khan K, Sevil Kilimci F, Kara ME. (2021). Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. Vet J Mehmet Akif Ersoy Uni 2021; 6(2): 85–92.

Kim MK, Ham MJ, Kim WR, et al. Investigating the accuracy of mandibulectomy and reconstructive surgery using 3D customized implants and surgical guides in a rabbit model. Maxillofac Plast Reconstr Surg 2023; 45(1): 8. DOI 10.1186/s40902-023-00375-9

Kiminki A, Tammisalo EH. Cortical ratio as an indicator of the mineral content of human mandibular bones. Acta Odontol Scand 1969; 27(4): 409–15. doi: 10.3109/00016356909040420.

Klipstein-Grobusch K, Georg T, Boeıng H, Interviewer variability in anthropometric measurements and estimates of body composition. Int J Epidemiol 1997; 26(Suppl. 1): S174–80. doi: 10.1093/ije/26.suppl_1.s174

Leary S, Underwood W, Anthony R, et al. AVMA guidelines for the euthanasia of animals: 2013 edition. Schaumburg: American Veterinary Medical Association, 2013.

Lee SW, Gyorgy S, Choi JB, Choi JY, Kim SG. Carbon plate shows even distribution of stress, decreases screw loosening, and increases recovery of preoperative daily feed intake amount in a rabbit model of mandibular continuity defects. J Craniomaxillofac Surg 2014; 42(5): e245–51. doi: 10.1016/j.jcms.2013.09.006

Liebich HG, König HE. Skeleton axiale In: Liebich HG, König HE, eds. Veterinary Anatomy of Domestic Mammals, Textbook and Color atlas. New York: Schattauer, 2007; 69–106.

McLaughlin CA, Chiasson RB. Laboratory anatomy of the rabbit. Briston: Mc Graw Hill, 1990.

Monfared AL. Applied anatomy of the rabbit's skull and its clinical application during regional anesthesia. Global Vet 2013; 10(6): 653–7. doi: 10.5829/idosi.gv.2013.10.6.72111

Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 2007; 22(5): 779–84.

Nuntanaranont T, Promboot T, Sutapreyasri S. Effect of expanded bone marrow-derived osteoprogenitor cells seeded into polycaprolactone/tricalcium phosphate scaffolds in new bone regeneration of rabbit mandibular defects. J Mater Sci Mater Med 2018; 29(3): 24. doi: 10.1007/s10856-018-6030-z

Olivera LB, Sant´ana E, Manzato AJ, Guerra FLB, Arnett GW. Biomechanical in vitro evaluation of three stable internal fixation techniques used in sagittal osteotomy of the mandibular ramus: a study in sheep mandibles. J Appl Oral Sci 2012; 20(4). 419–26 doi: 10.1590/S1678-77572012000400006

Özdamar K, Yayinlari, NK. SPSS ile Biyoistatistik. Ankara: Nisan kitabevi, 2015.

Pal TK, Chakraborty A, Banerjee S. A micro-anatomical comparison of goat jaw cancellous bone with human mandible: histomorphometric study for implant dentistry. J Int Clin Dental Res Orga 2014; 6(1): 20. doi: 10.4103/2231-0754.139088

Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007; 13: 1-10. doi: 10.22203/ecm.v013a01

Santos IG, Ramos de Faria F, da Silva Campos MJ, de Barros BÁC, Rabelo GD, Devito KL. Fractal dimension, lacunarity, and cortical thickness in the mandible: Analyzing differences between healthy men and women with cone-beam computed tomography. Imaging Sci Dent 2023; 53(2): 153–9. doi: 10.5624/isd.20230042.

Sevil-Kilimci F, Kara ME. The geometry of the proximal femoral medullary canal in German shepherd and Kangal dogs. J Fac Vet Med Istanbul Univ 2017; 43: 52–60. doi: 10.16988/iuvfd.270288

Shah SR, Young S, Goldman JL, Jansen JA, Wong ME, Mikos AG. A composite critical-size rabbit mandibular defect for evaluation of craniofacial tissue regeneration. Nature Protocols 2016; 11(10): 1889–2009. doi: 10.1038/nprot.2016.122

Szabelska A, Tatara MR, Krupski W. Morphological, densitometric and mechanical properties of mandible in 5-month-old Polish merino sheep. BMC Vet Res 2017; 13(1): 1–7. doi: 10.1186/s12917-016-0921-3

Tingart MJ, Apreleva M, von Stechow D, Zurakowski D, Warner JJ. The cortical thickness of the proximal humeral diaphysis predicts bone mineral density of the proximal humerus. J Bone Joint Surg Br 2003; 85, 611–7. doi: 10.1302/0301-620x.85b4.12843

Wang SH, Shen YW, Fuh LJ, Peng SL, Tsai MT et al. Relationship between Cortical Bone Thickness and Cancellous Bone Density at Dental Implant Sites in the Jawbone. Diagnostics (Basel) 2020; 10(9): 710. doi: 10.3390/diagnostics10090710

Wang Y, Zhang X, Mei S, Li Y, Khan AA, Guan S, Li X. Determination of critical-sized defect of mandible in a rabbit model: micro-computed tomography, and histological evaluation. Heliyon 2023; 9(7): e18047. doi: 10.1016/j.heliyon.2023.e18047

Watanabe H, Abdul MM, Kurabayashi T, Aoki H. Mandible size and morphology determined with CT on a premise of dental implant operation. Surg Radiol Anat 2010; 32(4): 343–9. doi:10.1007/s00276-009-0570-3

Wescott DJ. Effect of mobility on femur midshaft external shape and robusticity. Am J Phys Anthropol 2006; 130(2): 201–13. doi: 10.1002/ajpa.20316

Wittenberg JM, Mukherjee DP, Smith BR, Kruse RN. Biomechanical evaluation of new fixation devices for mandibular angle fractures. Int J Oral Maxillofac Surg 1997; 26(1): 68–73. doi: 10.1016/S0901-5027(97)808521

Wu Z, Liu Y, Singare S, Li D. Animal model for evaluation of strain gauge in mandibular distraction osteogenesis in rabbits. British J Oral Maxillofac Surg 2007; 45(8): 633–6. doi: 10.1016/j.bjoms.2007.04.004

Downloads

Published

2025-03-09

How to Cite

Evcim, B., & Kara, M. E. (2025). MORPHOMETRIC ANALYSIS OF THE MANDIBULA IN SHEEP, GOAT AND RABBIT. Slovenian Veterinary Research, Early View. https://doi.org/10.26873/SVR-2046-2024

Issue

Section

Original Research Article