PRIORITIZATION OF CANDIDATE GENES FOR THE EFFECT OF Fob3b1 QTL ON CHROMOSOME 15 IN MOUSE MODELS FOR POLYGENIC OBESITY AND LEANNESS USING INTEGRATIVE GENOMICS
DOI:
https://doi.org/10.26873/SVR-1972-2024Keywords:
data integration, gene expression, gene prioritisation, mouse models, obesity, QTL, single nucleotide polymorphismAbstract
The accumulation of excess fat affects meat quality, fertility, productivity, and whole-body metabolism in farm animals. The mouse model presents an efficient tool for investigating these traits. Previous QTL analyses of the unique mouse selection lines for polygenic obesity (Fat line) and leanness (Lean line) have revealed four major obesity QTLs: Fob1, Fob2, Fob3, and Fob4. Fob3, located on chromosome 15, was later subdivided into Fob3a and Fob3b, which additionally split into Fob3b1 and Fob3b2. Of the 158 genes annotated in Fob3b1, 16 candidate genes have been previously proposed for the QTL effects. However, genomic variability between the Fat and Lean lines at this locus has not been fully investigated. The present study aimed to validate previously identified candidates and to identify novel candidate genes potentially responsible for the Fob3b1 effect. Data from whole-genome sequencing and transcriptome analyses of Fat and Lean mouse lines were integrated with obesity QTLs in cattle and pigs from Animal QTLdb and phenotypes obtained from the International Mouse Phenotyping Consortium (IMPC) and the Mouse Genome Database. Out of 158 genes located in the Fob3b1 interval we prioritized 17 candidate genes, including six previously proposed (Adgrb1, Col22a1, Cyp11b1, Dgat1, Gpihbp1 and Ly6a) and 11 novel candidates: 9030619P08Rik, Eppk1, Kcnk9, Ly6c1, Ly6d, Ly6h, Ly6i, Ly6m, Ptk2, Trappc9, and a strong candidate Ly6e that deserve further functional analyses. Biological function and literature screening for candidate genes suggest that the Fob3b1's impact on obesity may operate through triglyceride metabolism (Dgat1 and Gpihbp1) and cytoskeletal and extracellular matrix remodelling (Ly6a, Ly6e and Eppk1). Further fine mapping, genetic and "omic" studies should clarify whether the Fob3b1 effect is due to a causal genetic variant in one of the candidates or possibly due to an additive effect of a combination of these positional candidates. The applied bioinformatics approach in determining the priority of candidate genes for obesity can also serve as a model for other traits in veterinary and livestock sciences.
Določanje prioritetnih kandidatnih genov znotraj intervala Fob3b1 QTL na kromosomu 15 pri mišjih modelih za poligensko debelost in vitkost z uporabo integrativne genomike
Izvleček: Kopičenje odvečne maščobe vpliva na kakovost mesa, plodnost, proizvodnost in presnovo pri rejnih živalih. Mišji modeli predstavljajo učinkovito orodje za raziskovanje genetske osnove teh lastnosti. Predhodne analize QTL-ov edinstvenih mišjih selekcijskih linij za poligensko debelost (debela linija) in vitkost (vitka linija) so razkrile štiri glavne QTL-e za debelost: Fob1, Fob2, Fob3 in Fob4. Fob3, ki se nahaja na kromosomu 15, je bil kasneje razdeljen na Fob3a in Fob3b, zadnji pa se dodatno razdeli na Fob3b1 in Fob3b2. Od 158 genov, anotiranih v Fob3b1, je bilo v prejšnjih študijah predlaganih 16 kandidatnih genov. Vendar pa genomska variabilnost med debelo in vitko linijo na tem lokusu ni bila v celoti raziskana. Namen te študije je bil potrditi predhodno identificirane kandidate in identificirati nove kandidatne gene, ki bi lahko bili odgovorni za učinek Fob3b1. Podatki iz celotnega genoma sekvenciranja in transkriptomskih analiz debelih in vitkih mišjih linij so bili vključeni v primerjalno analizo s QTL-i za debelost pri govedu in prašičih iz Animal QTLdb ter fenotipi, pridobljenimi iz Mednarodnega konzorcija za fenotipizacijo miši (IMPC) in podatkovne zbirke mišjega genoma (MGD). Izmed 158 genov, lociranih v Fob3b1, smo prednostno obravnavali 17 kandidatnih genov, vključno s šestimi predhodno predlaganimi (Adgrb1, Col22a1, Cyp11b1, Dgat1, Gpihbp1 in Ly6a) in 11 novimi kandidati: 9030619P08Rik, Eppk1, Kcnk9, Ly6c1, Ly6d, Ly6h, Ly6i, Ly6m, Ptk2, Trappc9 in Ly6e. Biološka funkcija in pregled literature za kandidatne gene nakazujeta, da lahko učinek Fob3b1 na debelost deluje preko metabolizma trigliceridov (Dgat1 in Gpihbp1) ter preoblikovanja citoskeleta in zunajceličnega matriksa (Ly6a, Ly6e in Eppk1). Nadaljnje natančno kartiranje, genetske in »omske« študije bodo pojasnili, ali je učinek Fob3b1 posledica vzročnega učinka ene same genetske različice ali morda aditivnega učinka kombinacije večjega števila teh pozicijskih kandidatov. Uporabljeni bioinformacijski pristop pri določanju prednostne liste kandidatnih genov za debelost lahko služi tudi kot model za preučevanje drugih lastnosti v veterinarskih in živinorejskih znanostih.
Ključne besede: povezovanje podatkov; izražanje genov; razvrstitev genov po pomembnosti; mišji modeli; debelost; QTL; posamezni nukleotid; polimorfizem
References
1. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet 2022 ;23(2): 120–33. doi: 10.1038/s41576-021-00414-z
2. González-Muniesa P, Mártinez-González MA, Hu FB, et al. Obesity. Nat Rev Dis Primers 2017;3(1): 17034. doi: 10.1038/nrdp.2017.34
3. Alsufiani H, Aldhaheri GA, Omar UM, Bahdilah TM, et al. Antioxidant activity and inhibitory effect of 2,4,4’-trihydroxychalcone on digestive enzymes related to obesity. Slov Vet Res 2023; 60 (suppl. 25): 363-74. doi: 10.26873/SVR-1625-2022
4. Haddad KK. How Successful are veterinary weight management plans for canine patients experiencing poor welfare due to being overweight and obese? Animals (Basel). 2024; 14(5): 740. doi: 10.3390/ani14050740
5. Ulker Ertugrul N, Yardimci A, Kaya Tektemur N, et al. Effects of irisin on the reproductive system of obese female rats induced by a high-fat diet. Slov Vet Res (ahead of print) doi: 10.26873/SVR-1754-2023
6. Palma-Vera SE, Reyer H, Langhammer M, et al. Genomic characterization of the world’s longest selection experiment in mouse reveals the complexity of polygenic traits. BMC Biol 2022; 20(1): 52. doi: 10.1186/s12915-022-01248-9
7. Saul MC, Philip VM, Reinholdt LG, Chesler EJ. High-diversity mouse populations for complex traits. Trends Genet 2019; 35(7): 501–14. doi: 10.1016/j.tig.2019.04.003
8. Sharp GL, Hill WG, Robertson A. Effects of selection on growth, body composition and food intake in mice I. Responses in selected traits. Genet Res 1984; 43(1): 75–92. doi: 10.1017/s0016672300025738
9. Horvat S, Bünger L, Falconer VM, et al. Mapping of obesity QTLs in a cross between mouse lines divergently selected on fat content. Mamm Genome 2000; 11(1): 2–7. doi: 10.1007/s003350010002
10. Stylianou IM, Christians JK, Keightley PD, et al. Genetic complexity of an obesity QTL (Fob3) revealedby detailed genetic mapping. Mamm Genome 2004; 15(6): 472–81. doi: 10.1007/s00335-004-3039-z
11. Prevoršek Z, Gorjanc G, Paigen B, Horvat S. Congenic and bioinformatics analyses resolved a major-effect Fob3b QTL on mouse Chr 15 into two closely linked loci. Mamm Genome 2010; 21(3/4): 172–85. doi: 10.1007/s00335-010-9252-z
12. Mikec Š, Šimon M, Morton NM, Atanur SS, Konc J, Dovč P, et al. Genetic variants of the hypoxia‐inducible factor 3 alpha subunit (Hif3a) gene in the Fat and Lean mouse selection lines. Mol Biol Rep 2022; 49(6): 4619–31. doi: 10.1007/s11033-022-07309-0
13. Šimon M, Mikec Š, Morton NM, et al. Whole genome sequencing of mouse lines divergently selected for fatness (FLI) and leanness (FHI) revealed several genetic variants as candidates for novel obesity genes . Genes Genomics 2024; 46(5): 557–75. doi: 10.1007/s13258-024-01507-9
14. Morton NM, Nelson YB, Michailidou Z, et al. A Stratified transcriptomics analysis of polygenic fat andl lean mouse adipose tissues identifies novel candidate obesity genes. PLoS One. 2011; 6(9): e23944. doi: 10.1371/journal.pone.0023944.g001
15. McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol 2016;17(1): 122. doi: 10.1186/s13059-016-0974-4
16. Birling MC, Yoshiki A, Adams DJ, et al. A resource of targeted mutant mouse lines for 5,061 genes. Nat Genet 2021;53(4): 416–9. doi: 10.1038/s41588-021-00825-y
17. Bult CJ, Blake JA, Smith CL, et al. Mouse genome database 2019. Nucleic Acids Res 2019; 47(D1): D801–6. doi: 10.1093/nar/gky1056
18. Hu ZL, Park CA, Reecy JM. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res 2022; 50(D1): D956–61. doi: 10.1093/nar/gkab1116
19. Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic Acids Res 2023; 51(D1): D933–41. doi: 10.1093/nar/gkac958
20. Raudvere U, Kolberg L, Kuzmin I, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 2019; 47(W1): W191–8. doi: 10.1093/nar/gkz369.
21. Wen P, Xiao P, Xia J. dbDSM: a manually curated database for deleterious synonymous mutations. Bioinformatics 2016; 32(12): 1914–6. doi: 10.1093/bioinformatics/btw086
22. Loughner CL, Bruford EA, McAndrews MS, Delp EE, Swamynathan S, Swamynathan SK. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics 2016; 10: 10. doi: 10.1186/s40246-016-0074-2
23. Bai X, Ju H, Gao L, et al. Regulation of nicotinic acetylcholine receptor α3 subtype in adipose tissue dysfunction. Prostaglandins Other Lipid Mediat 2019; 142: 53–8. doi: 10.1016/j.prostaglandins.2019.04.001
24. Cancello R, Zulian A, Maestrini , et al. The nicotinic acetylcholine receptor a7 in subcutaneous mature adipocytes: Downregulation in human obesity and modulation by diet-induced weight loss. Int J Obes 2012; 36(12): 1552–7. doi: 10.1038/ijo.2011.275
25. Martinez TF, Lyons-Abbott S, Bookout AL, et al. Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins. Cell Metab 2023; 35(1): 166–83. doi: 10.1016/j.cmet.2022.12.004
26. Beigneux AP, Davies BSJ, Bensadoun A, Fong LG, Young SG. GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res 2009; 50(suppl.): S57–S62. doi: 10.1194/jlr.R800030-JLR200
27. Wu J, Kakoola DN, Lenchik NI, Desiderio DM, Marshall DR, Gerling IC. Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimune diabetes. PLoS One 2012; 7(10): e46941. doi: 10.1371/journal.pone.0046941
28. Yamanouchi S, Kuwahara K, Sakata A, et al. A T cell activation antigen, Ly6C, induced on CD4+ Th1 cells mediates an inhibitory signal for secretion of IL-2 and proliferation in peripheral immune responses. Eur J Immunol 1998; 28(2): 696–707. doi: 10.1002/(SICI)1521-4141(199802)28:02<696::AID-IMMU696>3.0.CO;2-N
29. Zhao X, Zheng S, Chen D, et al. LY6E restricts entry of human coronaviruses, including currently pandemic SARS-CoV-2. J Virol 2020; 94(18): e00562-20. doi: 10.1128/JVI.00562-20
30. Huang Q, Chan KY, Tobey IG, et al. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS One 2019; 14(11) :e0225206. doi: 10.1371/journal.pone.0225206
31. Tokunaga M, Inoue M, Jiang Y, Barnes RH, Buchner DA, Chun TH. Fat depot-specific gene signature and ECM remodeling of Sca1high adipose-derived stem cells. Matrix Biol 2014; 36: 28–38. doi: 10.1016/j.matbio.2014.03.005.
32. Delgado-Chaves FM, Gómez-Vela F, Divina F, García-Torres M, Rodriguez-Baena DS. Computational analysis of the global effects of LY6E in the immune response to coronavirus infection using gene networks. Genes (Basel) 2020; 11(7): 831. doi: 10.3390/genes11070831
33. Pérez-Pérez R, García-Santos E, Ortega-Delgado FJ, et al. Attenuated metabolism is a hallmark of obesity as revealed by comparative proteomic analysis of human omental adipose tissue. J Proteomics 2012; 75(3): 783–95. doi: 10.1016/j.jprot.2011.09.016
34. Wagner G, Lindroos-Christensen J, Einwallner E, et al. HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2. Sci Rep 2017; 7(1): 40881. doi: 10.1038/srep40881
35. Kaupe B, Brandt H, Prinzenberg EM, Erhardt G. Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production, somatic cell score, conformation, reproduction, and productive lifespan in German Holstein cattle. J Anim Sci. 2007; 85(1): 11-21. doi: 10.2527/jas.2005-753.
36. Lee J, Kim H, Kang YW, et al. LY6D is crucial for lipid accumulation and inflammation in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55(7): 1479–91. doi: 10.1038/s12276-023-01033-w
37. Ma D, Pan Z, Chang Q, et al. KLF5-mediated Eppk1 expression promotes cell proliferation in cervical cancer via the p38 signaling pathway. BMC Cancer. 2021; 21(1): 377. doi: 10.1186/s12885-021-08040-y
38. Chen D, Li W, Du M, Cao B. Adipogenesis, fibrogenesis and myogenesis related gene expression in longissimus muscle of high and low marbling beef cattle. Livest Sci 2019; 229: 188–93. doi:10.1016/j.livsci.2019.09.032
39. México V, Michelle Quiñones-Chayrez K, Luna-Nevárez G, et al. Molecular markers associated with response to vaccination against Porcine Reproductive and Respiratory Syndrome virus in a commercial swine farm from southern Sonora. Vet México OA 2023;10: 1–13. doi: 10.22201/fmvz.24486760e.2023.1164
40. Young SG, Song W, Yang Y, Birrane G, Jiang H, Beigneux AP, et al. A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism. Proc Natl Acad Sci USA 2022; 119(36): e2211136119. doi: 10.1073/pnas.2211136119
41. Hsia SH, Leiter LA. Obesity and dyslipidemia: Epidemiology, physiology, and effects of weight loss. Endocrinologist. 1995 Mar;5(2):118–31.
42. Simončič M, Režen T, Juvan P, et al. Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle. BMC Genomics 2011; 12(1): 96. doi: 10.1186/1471-2164-12-96
43. Morton NM, Densmore V, Wamil M, et al. A polygenic model of the metabolic syndrome with reduced circulating and intra-adipose glucocorticoid action. Diabetes 2005; 54(12): 3371–8. doi: 10.2337/diabetes.54.12.3371
44. Arner P, Andersson DP, Bäckdahl J, Dahlman I, Rydén M. Weight gain and impaired glucose metabolism in women are predicted by inefficient subcutaneous fat cell lipolysis. Cell Metab 2018; 28(1): 45–e3. doi: 10.1016/j.cmet.2018.05.004
45. Xu H, Tao X, Wei Y, et al. Cloning of porcine GPIHBP1 gene and its tissue expression pattern and genetic effect on adipose traits. Gene 2015; 557(2): 146–53. doi: 10.1016/j.gene.2014.12.017
46. Chen HC, Smith SJ, Ladha Z, et al. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest 2002; 109(8): 1049–55. doi: 10.1172/JCI14672
47. Smith SJ, Cases S, Jensen DR, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 2000; 25(1): 87–90. doi: 10.1038/75651
48. Cui JX, Zeng YQ, Wang H, Chen W, Du JF, Chen QM, et al. The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig. Livest Sci 2011; 140(1/3): 292-6. doi: 10.1016/j.livsci.2011.04.007
49. Xing K, Liu H, Zhang F, Liu Y, Shi Y, Ding X, et al. Identification of key genes affecting porcine fat deposition based on co-expression network analysis of weighted genes. J Anim Sci Biotechnol 2021; 12(1): 100. doi: 10.1186/s40104-021-00616-9
50. Li T, Xu D, Zuo B, Lei M, Xiong Y, Chen H, et al. Ectopic overexpression of porcine DGAT1 increases intramuscular fat content in mouse skeletal muscle. Transgenic Res 2013; 22(1): 187–94. doi: 10.1007/s11248-012-9633-z
51. Li X, Ekerljung M, Lundström K, Lundén A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci 2013; 94(2): 153–8. doi: 10.1016/j.meatsci.2013.01.010
52. Grisart B, Coppieters W, Farnir F, et al. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 2002; 12(2): 222–31. doi: 10.1101/gr.224202
53. Shimada H, Noro E, Suzuki S, et al. Effects of adipocyte-derived factors on the adrenal cortex. Curr Mol Pharmacol 2019; 13(1): 2–6. doi: 10.2174/1874467212666191015161334.
54. Lee MJ, Pramyothin P, Karastergiou K, Fried SK. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 2014; 1842(3): 473–81. doi: 10.1016/j.bbadis.2013.05.029
55. Sandeep TC, Andrew R, Homer NZM, Andrews RC, Smith K, Walker BR. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11β-hydroxysteroid dehydrogenase type 1 Inhibitor carbenoxolone. Diabetes 2005; 54(3): 872–9. doi: 10.2337/diabetes.54.3.872
56. Shiu FH, Wong JC, Yamamoto T, Lala T, Purcell RH, Owino S, et al. Mice lacking full length Adgrb1 (Bai1) exhibit social deficits, increased seizure susceptibility, and altered brain development. Exp Neurol 2022; 351: 113994. doi: 10.1016/j.expneurol.2022.113994
57. Fond AM, Lee CS, Schulman IG, Kiss RS, Ravichandran KS. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J Clin Invest 2015; 125(7): 2748–58. doi: 10.1172/JCI80300
58. Cuffe H, Liu M, Key CCC, et al. Targeted deletion of adipocyte abca1 (ATP-binding cassette transporter A1) impairs diet-induced obesity. Arterioscler Thromb Vasc Biol 2018; 38(4): 733–43. doi: 10.1161/ATVBAHA.117.309880
59. Ren W, Aihara E, Lei W, et al. Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation. Sci Rep 2017; 7(1): 4004. doi: 10.1038/s41598-017-04099-5
60. Kaplan REW, Webster AK, Chitrakar R, Dent JA, Baugh LR. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. BMC Biol 2018; 16(1): 112. doi: 10.1186/s12915-018-0579-3.
61. Brandt C, Nolte H, Henschke S, et al. Food perception rimes hepatic ER homeostasis via melanocortin-dependent control of mTOR activation. Cell 2018;175(5): 1321–e11. doi: 10.1016/j.cell.2018.10.015
62. Koekkoek LL, Mul JD, la Fleur SE. Glucose-sensing in the reward system. Front Neurosci 2017; 11: 716. doi: 10.3389/fnins.2017.00716
63. Park SJ, Yu Y, Wagner B, Valinsky WC, Lomax AE, Beyak MJ. Increased TASK channel-mediated currents underlie high-fat diet induced vagal afferent dysfunction. Am J Physiol Gastrointest Liver Physiol 2018; 315(4): G592–G601.doi: 10.1152/ajpgi.00335.2017
64. Chen Y, Zeng X, Huang X, et al. Crosstalk between KCNK3-mediated ion current and adrenergic signaling regulates adipose thermogenesis and obesity. Cell 2017; 171(4): 836–e13. doi: 10.1016/j.cell.2017.09.015
65. Hoggart CJ, Venturini G, Mangino M, et al. Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index. PLoS Genet 2014; 10(7): e1004508. doi: 10.1371/journal.pgen.1004508.
66. Sung YJ, Pérusse L, Sarzynski MA, et al. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int J Obes (Lond) 2016; 40(4): 662-74. doi: 10.1038/ijo.2015.217
67. Liang ZS, Cimino I, Yalcin B, et al. Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genet 2020; 16(9): e1008916. doi: 10.1371/journal.pgen.1008916.
68. Cui P, Wang W, Zhang D, et al. Identification of TRAPPC9 and BAIAP2 gene polymorphisms and their association withfFat deposition-related traits in Hu sheep. Front Vet Sci. 2022; 9: 928375. doi: 10.3389/fvets.2022.928375
69. Liu H, Song H, Jiang Y, et al. A single-step genome wide association study on body size traits using imputation-based whole-genome sequence data in Yorkshire pigs. Front Genet 2021; 12: 629049. doi: 10.3389/fgene.2021.629049
70. Chen H, Yan X, Sun A, Zhang L, Zhang J, Yan Y. High‐fat‐diet‐induced extracellular matrix deposition regulates integrin—FAK signals in adipose tissue to promote obesity. Mol Nutr Food Res 2022; 66(7): e2101088. doi: 10.1002/mnfr.202101088
71. Hadley C, Cakir I, Cone RD. The role of the focal adhesion kinase family in leptin receptor signaling. J Endocr Soc 2020; 4:(Suppl. 1): SAT-604. doi: 10.1210/jendso/bvaa046.666
72. Luk CT, Shi SY, Cai EP, et al. FAK signalling controls insulin sensitivity through regulation of adipocyte survival. Nat Commun 2017; 8(1): 14360. doi: 10.1038/ncomms14360
73. Bisht B, Srinivasan K, Dey CS. In vivo inhibition of focal adhesion kinase causes insulin resistance. J Physiol 2008; 586(16): 3825–37. doi: 10.1113/jphysiol.2008.157107
74. Szyndler-Nędza M, Piorkowska K. Effect of DGAT1 gene mutation in sows of dam-line on the composition of the produced milk and piglet rearing during 21-day lactation. Afr J Biotechnol. 2015; 14(31): 2478–83. doi: 10.5897/AJB2015.14817
75. Costa A, Schwarzenbacher H, Mészáros G, Fuerst-Waltl B, Fuerst C, Sölkner J, et al. On the genomic regions associated with milk lactose in Fleckvieh cattle. J Dairy Sci 2019; 102(11): 10088–99. doi: 10.3168/jds.2019-16663
76. Dong W, Yang J, Zhang Q, Jiang L. Role of GPIHBP1 in regulating milk protein traits in dairy cattle. Anim Biotechnol 2020; 31(1): 81–5. doi: 10.1080/10495398.2018.1536064
77. Jiang J, Prakapenka D, Ma L, Cole, et al. Extreme antagonistic pleiotropy effects of DGAT1 on fat, milk and protein yields. In: Proceedings of the world congress on genetics applied to livestock production. 2018: 142.
78. Khan MZ, Dari G, Khan A, Yu Y. Genetic polymorphisms of TRAPPC9 and CD4 genes and their association with milk production and mastitis resistance phenotypic traits in Chinese Holstein. Front Vet Sci 2022; 9: 1008497. doi: 10.3389/fvets.2022.1008497
79. Ma L, Luo H, Brito LF, Chang Y, Chen Z, Lou W, et al. Estimation of genetic parameters and single-step genome-wide association studies for milk urea nitrogen in Holstein cattle. J Dairy Sci 2023; 106(1): 352–63. doi: 10.3168/jds.2022-21857
80. Yang J, Liu X, Wang D, Ning C, Wang H, Zhang Q, et al. Functional validation of GPIHBP1 and identification of a functional mutation in GPIHBP1 for milk fat traits in dairy cattle. Sci Rep 2017; 7: 8546. doi: 10.1038/s41598-017-08668-6
81. Tăbăran A, Balteanu VA, Gal E, et al. Influence of DGAT1 K232A polymorphism on milk fat percentage and fatty acid profiles in romanian Holstein Cattle. Anim Biotechnol 2015; 26(2): 105–11. doi: 10.1080/10495398.2014.933740
82. Atanassov C, Viallemonteil E, Lucas C, et al. Proteomic pattern of breast milk discriminates obese mothers with infants of delayed weight gain from normal-weight mothers with infants of normal weight gain. FEBS Open Bio 2019; 9(4): 736–42. doi: 10.1002/2211-5463.12610
83. Isganaitis E, Venditti S, Matthews TJ, Lerin C, Demerath EW, Fields DA. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am J Clinl Nutr 2019; 110(1): 111–20. doi: 10.1093/ajcn/nqy334
84. Karabağ K, Alkan S, Karslı T, İkten C, Şahin İ, Mendeş M. Effects of selection in terms of meat yield traits on leptin receptor gene in japanese quail lines. Slov Vet Res 2022; 59(2): 89–98. doi: 10.26873/SVR-1316-202
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Martin Šimon *, Tanja Kunej, Nicholas M. Morton, Simon Horvat *
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.