THE EFFECT OF EGGSHELL HYDROXYAPATITE POWDER AND AUTOLOGOUS BONE MARROW ON THE HEALING OF BONE DEFECTS IN RABBITS

Authors

  • Nadia Hameed Rija Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0001-9132-6249
  • Ali Ghazi Atiyah * Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Tikrit, Tikrit, Iraq, alighazivet@tu.edu.iq

DOI:

https://doi.org/10.26873/SVR-1829-2024

Keywords:

hydroxyapatite, avian eggshell powder, autologous bone marrow aspiration, bone gap

Abstract

The repair of bone defects remains a challenge for clinical orthopedic surgery. Therefore, the present study was designed to evaluate the effect of using eggshell hydroxyapatite (eHA), which was prepared previously from avian eggshell by hydrothermal method and autologous bone marrow aspirated from the femoral bone, on the healing of bone gap defect on the radius bone of the right forelimb in rabbits. This study was conducted on 28 male rabbits divided randomly into four groups each (n=7); in all experimental animals (10 mm length × 2mm width), a bone gap was induced at the mid-shaft of the radius bone reaching the marrow cavity at the right forelimb. The defect in GI was left open as a control group without any additives. In GII, the bone gap was filled with eHA powder; in GIII, it was filled with eHA powder. The bone gap was filled with autologous bone marrow, and in GIV, the bone defect was equally filled with a combination of eHA and bone marrow. Experimental animals were followed up clinically, radiographically at (2, 4, 6, 8) weeks post-operatively, and histopathologically at (4, 6) weeks post-operatively. The radiological and histopathological findings revealed promising results in treated groups compared to a control group, with the best results in the combination of eHA and autologous bone marrow. In conclusion, the use of eHA and autologous bone marrow is considered a beneficial graft material in bone defect regeneration.

Vpliv prahu hidroksiapatita iz jajčne lupine in avtolognega kostnega mozga na celjenje kostnih poškodb pri kuncih

Izvleček: Sanacija kostnih defektov ostaja izziv za klinično ortopedsko kirurgijo. Zato je bil namen te raziskave oceniti učinek uporabe hidroksiapatita iz jajčne lupine (eHA), predhodno pripravljenega iz jajčne lupine ptic s hidrotermalno metodo, in avtolognega kostnega mozga, pridobljenega iz stegnenice, na celjenje kostnega defekta na radialni kosti desne sprednje okončine pri kuncih. Študija je bila izvedena na 28 samcih kuncev, naključno razdeljenih v štiri skupine (n = 7); pri vseh poskusnih živalih (dolžina 10 mm × širina 2 mm) je bila ustvarjena kostna vrzel na sredini desne koželjnice, ki je segala do kostnega mozga. Vrzel v skupini GI je ostala odprta kot kontrolna skupina brez kakršnihkoli dodanih snovi. V skupini GII je bila kostna vrzel zapolnjena s prahom eHA. V skupini GIII je bila kostna vrzel zapolnjena z avtolognim kostnim mozgom, v GIV pa s kombinacijo eHA in kostnega mozga. Poskusne živali so bile klinično spremljane, rentgensko pregledane 2 tedna ter 4, 6 in 8 tednov po operaciji, histopatološko pa 4 tedne in 6 tednov po operaciji. Radiološke in histopatološke ugotovitve so pokazale obetavne rezultate v zdravljenih skupinah v primerjavi s kontrolno skupino, pri čemer so bili najboljši rezultati pri kombinaciji eHA in avtolognega kostnega mozga. Sklenemo lahko, da uporaba eHA in avtolognega kostnega mozga velja za koristen presadni material pri regeneraciji kostnih defektov.

Ključne besede: hidroksiapatit; prah iz lupine ptičjih jajc; avtologna aspiracija kostnega mozga; kostna vrzel

References

Agbeboh NI, Oladele IO, Daramola OO, Adediran AA, Olasukanmi OO, Tanimola MO. Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon 2020; 6(4): e03765. doi: 10.1016/j.heliyon.2020.e03765

Ahmad Fara ANK, bin Yahya MA, Abdullah HZ. Preparation and characterization of biological hydroxyapatite (HAp) obtained from Tilapia fish bone. Adv Mat Res 2015; 1087: 152–6. doi: 10.4028/www.scientific.net/AMR.1087

Alonzo M, Primo FA, Kumar SA, et al. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr Opin Biomed Eng 2021; 17: 100248. doi: 10.1016/j.cobme.2020.100248

Andric T, Taylor BL, Whittington AR, Freeman JW. Fabrication and characterization of three-dimensional electrospun scaffolds for bone tissue engineering. Regen Eng Transl Med 2015; 1: 32–41. doi: 10.1007/s40883-015-0004-1

Ardhiyanto HB. Stimulasi osteoblas oleh hidroksiapatit sebagai material bone graft pada proses penyembuhan tulang. Stomatognatic 2012; 9(3): 162–4.

Atiyah A, Al-Falahi N, Farhan F. Synthesis and structure of eggshell hydroxyapatite bone implant. Online J Vet Res 2018; 22(6): 495–500.

Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel) 2019; 12(4): 568. doi: 10.3390/ma12040568

Dorozhkin SV. Calcium orthophosphate (CaPO4)-based bioceramics: preparation, properties, and applications. Coatings 2022; 12(10): 1380. doi: 10.3390/coatings12101380

El-Ghannam A, Amin H, Nasr T, Shama A. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects. Int J Oral Maxillofac Implants 2004; 19(2): 184–91.

Fuadiyah D, Ratnawati R, Kurniawati S, et al. Effect of chicken eggshell powder on osteoblast, osteocyte, and osteoprotegerin (OPG) expressions in alveolar bone defect healing of wistar rats. Mal J Med Health Sci 2023; 19(suppl. 5): 58–65.

Gayathri SB, Kamaraj P. Macrophage and osteoblast response to micro and nano hydroxyapatite: a review. Nano Vis 2011; 1(1): 1–13.

Goel SC, Singh D, Rastogi A, Kumaraswamy V, Gupta A, Sharma N. Role of tricalcium phosphate implant in bridging the large osteoperiosteal gaps in rabbits. Indian J Exp Biol 2013; 51(5): 375–80.

Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41–9. doi: 10.1038/nature00870

Kattimani VS, Chakravarthi PS, Kanumuru NR, et al. Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report. J Int Oral Health 2014; 6(3): 15–9.

Kim SH, Kim W, Cho JH, Oh NS, Lee MH, Lee SJ. Comparison of bone formation in rabbits using hydroxyapatite and β-tricalcium phosphate scaffolds fabricated from egg shells. Adv Mat Res 2008; 47: 999–1002. doi: 10.4028/www.scientific.net/AMR.47-50.999

Korf-Klingebiel M, Kempf T, Sauer T, et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 2008; 29(23): 2851–8. doi: 10.1093/eurheartj/ehn456

Lu H, Cui L, Zuo C, Lin S, Wu T. Evaluation of morphological parameters of bone formation in Sprague–Dawley rats of different ages by in vivo fluorochrome labeling. Ital J Zool (Modena) 2015; 82(1): 33–40. doi: 10.1080/11250003.2014.984781

Manchi G, Brunnberg MM, Shahid M, et al. Radial and ulnar fracture treatment with paraosseous clamp‐cerclage stabilisation technique in 17 toy breed dogs. Vet Rec Open 2017; 4(1): e000194. doi: 10.1136/vetreco-2016-000194

Park JW, Bae SR, Suh JY, et al. Evaluation of bone healing with eggshell‐derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A 2008; 87(1): 203–14. doi: 10.1002/jbm.a.31768

Pawelec K, eds. Bone repair biomaterials: regeneration and clinical applications. 2nd ed. Cambridge: Woodhead Publishing, 2018.

Shafiu Kamba A, Zakaria ZAB. Osteoblasts growth behaviour on bio-based calcium carbonate aragonite nanocrystal. BioMed Res Int 2014; 2014: 215097. doi: 10.1155/2014/215097

Sobhi BM, Ismael EY, Mansour AS, Elsabagh M, Fahmy KNE. Effect of nano-hydroxyapatite as an alternative to inorganic dicalcium phosphate on growth performance, carcass traits, and calcium and phosphorus metabolism of broiler chickens. J Adv Vet Res 2020; 10(4): 250–6.

Stamnitz S, Klimczak A. Mesenchymal stem cells, bioactive factors, and scaffolds in bone repair: from research perspectives to clinical practice. Cells 2021; 10(8): 1925. doi: 10.3390/cells10081925

Sugaya H, Yoshioka T, Kato T, et al. Comparative analysis of cellular and growth factor composition in bone marrow aspirate concentrate and platelet-rich plasma. Bone Marrow Res 2018; 2018: 1549826. doi: doi: 10.1155/2018/1549826

Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 2017; 249: 321–30. doi: 10.1016/j.cis.2017.04.007

Szpalski C, Wetterau M, Barr J, Warren SM. Bone tissue engineering: current strategies and techniques—part I: scaffolds. Tissue Eng Part B Rev 2012; 18(4): 246–57. doi: 10.1089/ten.TEB.2011.0427

Thanoon M, Eesa M, Abed E. Effects of platelets rich fibrin and bone marrow on the healing of distal radial fracture in local dogs: comparative study. Iraqi J Vet Sci 2019; 33(2): 419–25. doi: 10.33899/ijvs.2019.163169

Travlos GS. Normal structure, function, and histology of the bone marrow. Toxicol pathol 2006; 34(5): 548–65. doi: 10.1080/01926230600939856

Vidal L, Brennan MÁ, Krissian S, et al. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomat 2020; 114: 384–94. doi: 10.1016/j.actbio.2020.07.030

Woeckel VJ, Alves RDAM, Swagemakers SMA, et al. 1α, 25‐(OH) 2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles. Journal of cellular physiology. 2010; 225(2): 593–600. doi: 10.1002/jcp.22244

Downloads

Published

2025-02-27

How to Cite

Hameed Rija, N., & Ghazi Atiyah, A. (2025). THE EFFECT OF EGGSHELL HYDROXYAPATITE POWDER AND AUTOLOGOUS BONE MARROW ON THE HEALING OF BONE DEFECTS IN RABBITS. Slovenian Veterinary Research, Early View. https://doi.org/10.26873/SVR-1829-2024

Issue

Section

Original Research Article