TRANSCRIPTOME ANALYSIS AND BIOINFORMATICS CHARACTERIZATION OF CANINE HEMANGIOSARCOMA: POTENTIAL THERAPEUTIC TARGETS

Authors

  • Özge Özmen * Ankara University, Faculty of Veterinary Medicine, Department of Genetics, 06110, Altındag, Ankara, Türkiye, ozgeozmen@ankara.edu.tr
  • Berna Kaya Ankara University, Faculty of Veterinary Medicine, Department of Genetics, 06110, Altındag, Ankara, Türkiye
  • Kardelen Karaman Kırıkkale University, Faculty of Veterinary Medicine, Department of Animal Breeding, Prof. Dr. Beşir Atalay Campus, 71450, Yahşihan, Kırıkkale, Türkiye

DOI:

https://doi.org/10.26873/SVR-1797-2024

Keywords:

angiosarcoma, spleen, heart, liver, comparative oncology, transcriptomic profiling

Abstract

Angiosarcoma is a highly aggressive cancer with a generally poor prognosis. It originates from the cells responsible for blood vessel formation and can develop in various parts of the body, including the skin, breast, liver, spleen, and other soft tissues. Although it constitutes only a small fraction of all diagnosed cancers, angiosarcoma has proven to be challenging regarding diagnosis and treatment options. This study aimed to enhance our understanding of the molecular mechanisms underlying angiosarcoma at the transcriptomic level. Through the utilization of bioinformatics techniques, we successfully identified a cluster of differentially expressed genes that potentially play a role in the development and progression of angiosarcoma. The genes ALB, TNNT2, VIM, and CA9 are particularly noteworthy, which emerge as potential biomarkers specifically associated with spleen, heart, and liver angiosarcoma.  These identified biomarkers hold significant potential for their application in diagnosing and monitoring angiosarcoma, facilitating improved clinical management and targeted interventions. The identification of these biomarkers enhances our understanding of the molecular mechanisms involved in angiosarcoma and provides potential targets for therapeutic interventions.   In conclusion, bioinformatics methods offer a valuable approach to investigating the underlying mechanisms of angiosarcoma. The identification of molecular targets in this study offers potential advancements in diagnosing and treating angiosarcoma.

Analiza transkriptoma in bioinformacijska karakterizacija hemangiosarkoma pri psih: potencialne terapevtske tarče

Izvleček: Pasji hemangiosarkom (HSA) je agresiven rak s slabo prognozo. Nastane v celicah, ki obdajajo krvne žile, in prizadene različne organe, vključno z vranico, srcem in jetri. Kljub redki pojavnosti predstavlja velike diagnostične in terapevtske izzive. Nekatere pasme, kot so zlati prinašalci, bokserji in nemški ovčarji, so dovzetnejše za hemangio­sarkom, kar kaže na možno genetsko podlago dovzetnosti za bolezen. Vendar pa natančni molekularni mehanizmi, ki določajo nagnjenost teh pasem k HSA, še niso povsem pojasnjeni. Namen te študije je bil izboljšati naše razumevanje molekularnih mehanizmov za določanje hemangiosarkoma pri psih, in sicer s ponovno analizo javno dostopnih podat­kov o sekvenciranju RNA z uporabo bioinformacijskih tehnik pri psih. Naši rezultati kažejo, da bi se geni ALB, TNNT2, VIM in CA9 lahko uporabili kot novi biomarkerji za HSA vranice, srca in jeter pri pasmi zlati prinašalec. Na podlagi naših ugotovitev predlagamo, da bi STAT3, TP53, PPARG, ATF3, CCND1 ter miR-21-5p, miR-92a-3p in miR-155-5p služili kot biomarkerji za jetrni HSA pri zlatih prinašalcih. Poleg tega naša analiza nabora podatkov HSA vranice šestih različnih pasem psov razkriva izražanje pasemsko značilnih genov v HSA vranice psov. Identifikacija teh biomarkerjev krepi naše razumevanje molekularnih mehanizmov angiosarkoma (AS) in predlaga potencialne tarče za zdravljenje.

Ključne besede: angiosarkom; vranica; srce; jetra; primerjalna onkologija; transkriptomsko profiliranje

References

Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4: 2. doi: 10.1186/1471-2105-4-2

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114–20. doi: 10.1093/bioinformatics/btu170

Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 2020; 48(W1): W244–W51. doi: 10.1093/nar/gkaa467

Chiarella E, Aloisio A, Scicchitano S, Bond HM, Mesuraca M. Regulatory role of microRNAs targeting the transcription co-factor ZNF521 in normal tissues and cancers. Int J Mol Sci 2021; 22(16): 8461. doi: 10.3390/ijms22168461

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8 Suppl 4: S11. doi: 10.1186/1752-0509-8-S4-S11

Florou V, Wilky BA. Current and future directions for angiosarcoma therapy. Curr Treat Options Oncol 2018; 19: 14. doi: 10.1007/s11864-018-0531-3

Giardine B, Riemer C, Hardison RC, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005; 15(10): 1451-5. doi: 10.1101/gr.4086505.

Grimes JA, Robinson KR, Bullington AM, Schmiedt JM. Identification of serum microRNAs with differential expression between dogs with splenic masses and healthy dogs with histologically normal spleens. Am J Vet Res 2021; 82(8): 659–66. doi: 10.2460/ajvr.82.8.659

Hsu SD, Lin FM, Wu WY, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 2011; 39: D163–9. doi: 10.1093/nar/gkq1107

Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res 2018; 46: D239–D245. doi: 10.1093/nar/gkx1141

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(1): 550. doi: 10.1186/s13059-014-0550-8

Martín de las Mulas J, Gómez-Villamandos JC, Pérez J, Mozos E, Estrado M, Méndez A. Immunohistochemical evaluation of canine primary liver carcinomas: distribution of alpha-fetoprotein, carcinoembryonic antigen, keratins and vimentin. Res Vet Sci 1995; 59(2): 124–7. doi: 10.1016/0034-5288(95)90045-4

Megquier K, Turner-Maier J, Swofford R, et al. Comparative genomics reveals shared mutational landscape in canine hemangiosarcoma and human angiosarcoma. Mol Cancer Res 2019; 17: 2410–21. doi: 10.1158/1541-7786.MCR-19-0221

Meng X, Li W, Peng X, Li Y, Li M. Protein interaction networks: centrality, modularity, dynamics, and applications. Front Comput Sci 2021; 15(6): 156902. doi: 10.1007/s11704-020-8179-0

Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203–17. doi: 10.1016/j.cell.2006.07.031

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016; 11(9): 1650–67. doi: 10.1038/nprot.2016.095

Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10(10): 1507–17. doi: 10.1261/rna.5248604.

Sawa M, Inoue M, Yabuki A, et al. Rapid immunocytochemistry for the detection of cytokeratin and vimentin: assessment of its diagnostic value in neoplastic diseases of dogs. Vet Clin Pathol 2017; 46(1): 172–8. doi: 10.1111/vcp.12462

Schultheiss PC. A retrospective study of visceral and nonvisceral hemangiosarcoma and hemangiomas in domestic animals. J Vet Diagn Invest 2004; 16(6): 522–6. doi: 10.1177/10406387040160060

Shiga A, Shirota K. Vimentin/cytokeratin co-expression foci in a well-differentiated canine hepatocellular carcinoma. J Vet Med Sci 2000; 62(2): 199–202. doi: 10.1292/jvms.62.199

Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics 2014; 47: 8.13.1–24. doi: 10.1002/0471250953.bi0813s47

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607–D613. doi: 10.1093/nar/gky1131

Tamburini BA, Trapp S, Phang TL, Schappa JT, Hunter LE, Modiano JF. Gene expression profiles of sporadic canine hemangiosarcoma are uniquely associated with breed. PLoS One 2009; 4(5): e5549. doi: 10.1371/journal.pone.0005549

Vail DM, MacEwen EG. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 2000; 18: 781–92. doi: 10.3109/07357900009012210

Wang B, Wu L, Chen J, et al. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6(1): 94. doi: 10.1038/s41392-020-00443-w

Wong K, Ludwig L, Krijgsman O, Adams DJ, Wood GA, van der Weyden L. Comparison of the oncogenomic landscape of canine and feline hemangiosarcoma shows novel parallels with human angiosarcoma. Dis Model Mech 2021; 14(7): dmm049044. doi: 10.1242/dmm.049044

Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39: W316–22. doi: 10.1093/nar/gkr483

Yoshikawa R, Maeda A, Ueno Y, et al. Intraperitoneal administration of synthetic microRNA-214 elicits tumor suppression in an intraperitoneal dissemination mouse model of canine hemangiosarcoma. Vet Res Commun 2022; 46: 447–57. doi: 10.1007/s11259-021-09869-1

Downloads

Published

2025-02-28

How to Cite

Özmen, Özge, Kaya, B., & Karaman, K. (2025). TRANSCRIPTOME ANALYSIS AND BIOINFORMATICS CHARACTERIZATION OF CANINE HEMANGIOSARCOMA: POTENTIAL THERAPEUTIC TARGETS. Slovenian Veterinary Research, 62(27-Suppl), 41–52. https://doi.org/10.26873/SVR-1797-2024

Issue

Section

Original Research Article