FIRST INSIGHT INTO GENETIC DIVERSITY OF ALPINE IBEX (Capra ibex) IN SLOVENIA

Authors

  • Elena Bužan * Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper; Faculty of Environmental Protection, Trg mladosti 7, 3320 Velenje, Slovenia, elena.buzan@upr.si
  • Luka Duniš Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
  • Aja Bončina Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
  • Simon Horvat Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
  • Neža Pogorevc Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
  • Alice Brambilla Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, ZH, Switzerland; Alpine Wildlife Research Centre, Gran Paradiso National Park, Frazione Jamonin 5, 10080 Noasca, TO, Italy
  • Johann Sölkner Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str. 33, 1180 Vienna, Austria
  • Pamela Burger Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
  • Ivica Medugorac Ludwig Maximilian University of Munich, 80539 Munich, Germany
  • Boštjan Pokorny Faculty of Environmental Protection, Trg mladosti 7, 3320 Velenje; Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia

DOI:

https://doi.org/10.26873/SVR-1788-2023

Keywords:

Capra ibex, mitochondrial DNA, MHC DRB exon2, reintroduction, management

Abstract

In Europe, the Alpine ibex (Capra ibex) was on the brink of extinction in the 19th century. Therefore, different conservation measures were implemented, and several reintroductions were made in the Alpine arc, starting from the only surviving population in Gran Paradiso, Italy. An extreme historical bottleneck and additional reintroductions have strongly shaped the genetic make-up of recent populations, resulting in significant genetic drift and profound inbreeding across the species range. To support science-based conservation actions, molecular methods have been increasingly used. However, such analyses did not include populations in Slovenia.

We analysed neutral loci (partial fragment of mitochondrial cytochrome b, mtDNA) and the adaptive major histocompatibility complex (MHC DRB exon 2) of the Alpine ibex from both Slovenian populations (Julian and Kamnik-Savinja Alps) to understand how past reintroductions and recent management have affected the genetic diversity of the species. Results showed that both populations are genetically severely depleted, carrying only one mtDNA haplotype and one functional allele for MHC DRB exon 2, Caib-DRB*01. This calls for further conservation actions, including the reintroduction of individuals with different genetic background. However, the Alpine ibex is currently considered a non-native species in Slovenia, which makes conservation actions extremely difficult and threatens the long-term survival of the species. Therefore, scientists and population managers are urging policy/decision makers to change the status of the species to the native one and consequently to allow reintroductions. These appeals are supported by previous archaeological data on the existence of bones assigned to Alpine ibex in the Julian Alps, and evidence of severe genetic depletion in current ibex populations confirmed in this study.

PRVI VPOGLED V GENETSKO RAZNOLIKOST ALPSKEGA KOZOROGA (Capra ibex) V SLOVENIJI

Izvleček: V Evropi je bil alpski kozorog (Capra ibex) v 19. stoletju na robu izumrtja. Izvajali so se različni ukrepi za njegovo ohranjanje. V alpskem loku je bilo izvedenih več ponovnih naselitev, najprej z edino ohranjeno populacijo v kraju Gran Paradiso v Italiji. Izredna okrnjenost vrste v preteklosti in dodatne ponovne naselitve so močno vplivale na genetsko sestavo populacije, kar je povzročilo znaten genetski zdrs in parjenje v sorodstvu na celotnem območju vrste. V podporo znanstveno utemeljenim ukrepom ohranjanja se vse pogosteje uporabljajo molekularne metode, vendar takšne analize niso vključevale populacij v Sloveniji.

Da bi razumeli, kako je ponovno naseljevanje in nedavno upravljanje vplivalo na genetsko raznolikost vrste, smo analizirali nevtralne lokuse (delni fragment mitohondrijskega citokroma b, mtDNA) in adaptivni poglavitni histokompatibilnostni kompleks (MHC DRB ekson 2) alpskega kozoroga iz obeh slovenskih populacij (Julijske in Kamniško-Savinjske Alpe). Rezultati so pokazali, da sta obe populaciji genetsko zelo osiromašeni, saj nosita le en haplotip mtDNA in en funkcionalni alel za MHC DRB ekson 2, Caib-DRB*01. Zato so potrebni nadaljnji ukrepi za ohranjanje, vključno s ponovno naselitvijo živali z drugačnim genetskim ozadjem. Vendar alpski kozorog v Sloveniji trenutno velja za tujerodno vrsto, kar zelo otežuje ukrepe za njegovo ohranitev in ogroža dolgoročno preživetje vrste. Znanstveniki in upravljavci populacij zato pozivajo politike/odločevalce, naj spremenijo status vrste v avtohtono in posledično omogočijo ponovno naselitev. Ti pozivi so podprti s predhodnimi arheološkimi podatki o obstoju kosti alpskega kozoroga v Julijskih Alpah in z dokazi o izraziti genetski osiromašenosti sedanjih populacij kozoroga, potrjenimi v tej študiji.

Ključne besede: Capra ibex; mitohondrijska DNA; MHC DRB exon2; ponovna naselitev; upravljanje

References

● 1. Grodinsky C, Stüwe M. With lots of help, Alpine ibex return to their mountains. Smithsonian 1987; 18(9): 68–77.

● 2. Stüwe M, Scribner KT. Low genetic variability in reintroduced Alpine ibex (Capra ibex ibex) populations. J Mammal 1989; 70(2): 370–3.

● 3. Stüwe M, Nievergelt B. Recovery of Alpine ibex from near extinction: the result of effective protection, captive breeding, and reintroductions. Appl Anim Behav Sci 1991; 29(1/4): 379–87.

● 4. Brambilla A, von Hardenberg A, Nelli L, Bassano B. Distribution, status, and recent population dynamics of Alpine ibex (Capra ibex) in Europe. Mamm Rev 2020; 50(3): 267–77.

● 5. Tosi G, Scherini G, Appolonio M, et al. Modello di 612 valutazione ambientale per la reintroduzione dello stambecco (Capra ibex ibex). Suppl alle Ric di Biol della Selvag 1986; 77: 5–77.

● 6. Wiersema G, Gauthier D. Status and aspects of reintroduction and management of the Alpine ibex in the Alps. Trav Sci du Parc Natl la Vanoise 1990; 18: 235–52.

● 7. Giacometti M. Beitrag zur Ansiedlungsdynamik und aktuellen Verbreitung des Alpensteinbockes (Capra i. ibex L.) im Alpenraum. Z Jagdwiss 1991; 37(3): 157–73.

● 8. Biebach I, Keller LF. A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex ibex). Mol Ecol 2009; 18(24): 5046–58.

● 9. Grossen C, Biebach I, Angelone-Alasaad S, Keller LF, Croll D. Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evol Appl 2018; 11(2): 123–39.

● 10. Grossen C, Guillaume F, Keller LF, Croll D. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat Commun 2020; 11(1): e1001.doi: 10.1038/s41467-020-14803-1

● 11. Bozzuto C, Biebach I, Muff S, Ives AR, Keller LF. Inbreeding reduces long-term growth of Alpine ibex populations. Nat Ecol Evol 2019; 3(9): 1359–64.

● 12. Hollenbeck CM, Portnoy DS, Gold JR. A method for detecting recent changes in contemporary effective population size from linkage disequilibrium at linked and unlinked loci. Heredity 2016; 117: 207–16.

● 13. Hohenlohe PA, Funk WC, Rajora OP. Population genomics for wildlife conservation and management. Mol Ecol 2021; 30(1): 62–82.

● 14. Brambilla A, Keller L, Bassano B, Grossen C. Heterozygosity-fitness correlation at the major histocompatibility complex despite low variation in Alpine ibex (Capra ibex). Evol Appl 2017; 11(5): 631–44.

● 15. Grossen C, Keller L, Biebach I, Croll D. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex. PLoS Genet 2014; 10(6): e1004438. doi: 10.1371/journal.pgen.1004438

● 16. Giacometti M, Roganti R, De Tann D, Stahlberger-Saitbekova N, Obexer-Ruff G. Alpine ibex (Capra ibex ibex) x domestic goat (C. aegagrus domestica) hybrids in a restricted area of southern Switzerland. Wildlife Biol 2004; 10(2): 137–43.

● 17. Moroni B, Brambilla A, Rossi L, Meneguz PG, Bassano B, Tizzani P. Hybridization between Alpine ibex and domestic goat in the Alps: a sporadic and localized phenomenon? Animals 2022; 12(6): e751. doi: 10.3390/ani12060751

● 18. Dupré E, Monaco A, Pedrotti L. Alpine ibex conservation strategy: the Alpine ibex in the Italian Alps: statuts, potential distribution and managment options for conservation and sustainable development. Varese: WWF International, 2001. ttp://uagra.uninsubria.it/LHI/ (28. 9. 2023)

● 19. Turk I. Potočka zijalka: palaeontological and archaeological results of the campaigns 1997-2000. Arheol Vest 2007; 58(1): 453–70.

● 20. Pacher M. Upper Pleistocene cave assemblages at alpine sites in Austria and adjacent regions. Preistoria Alpina 2003; 39: 115–27.

● 21. Rakovec I. Razvoj kvartarne sesalske favne Slovenije. Arheol Vest 1973; 24(1): 225–70.

● 22. Toškan B, Bartosiewicz L. Živalski ostanki iz naselbine na Mostu na Soči: vpogled v družbeno kompleksnost železnodobne skupnosti v jugovzhodnoalpskem prostoru. In: Dular J, Tecco Hvala S, eds. Železnodobno naselje Most na Soči: razprave. Ljubljana: ZRC SAZU, Inštitut za arheologijo; Založba ZRC, 2018: 467–510.

● 23. Kryštufek B. Sesalci Slovenije. Ljubljana: Priridoslovni muzej, 1991: 1–294.

● 24. Pedrotti L, Lovari S. Rupicapra rupicapra (Linnaeus, 1758). Atlas Eur Mamm 1999; 406–9.

● 25. Bužan E, Toškan B, Zver L, Duniš L, Pokorny B. Harmonizacija statusa alpskega kozoroga (Capra ibex) na obeh straneh meje. Končno poročilo projekta DINALPCONNECT (delovni sklop 3) čezmejne Pilotne regije med Italijo in Slovenijo za spodbujanje ekološke povezljivost. Velenje: Fakulteta za varstvo okolja, 2022.

● 26. Marenče M. Stanje gamsov in kozorogov v Triglavskem narodnem parku. Lovec 2004; 87(3): 124–5.

● 27. Stergar M, But D, Samec J, Jonozovič M, Jerina K. Območja razširjenosti in lokalne gostote parkljarjev v Sloveniji. Lovec 2009; 92(11): 546–50.

● 28. Veternik D, Vesel Š. Alpski kozorog v Kamniško-Savinjskih Alpah. In: Strokovni posvet Alpski kozorog v Sloveniji: včeraj, danes, jutri. Bled, 2022.

● 29. Marenče M. 80 let Triglavskega narodnega parka. Lovec 2004; 87(7/8): 399–403.

● 30. Hrovat S, Marolt M. Alpski kozorog in upravljanje z njim v Triglavskem narodnem parku (LPN Triglav Bled). In: Strokovni posvet Alpski kozorog v Sloveniji: včeraj, danes, jutri. Bled, 2022.

● 31. Razpet P. Alpski kozorog v zahodnih Julijskih Alpah. In: Strokovni posvet Alpski kozorog v Sloveniji: včeraj, danes, jutri. Bled, 2022.

● 32. Favalli M. Alpski kozorog v Benečiji Julijski krajini. In: Strokovni posvet Alpski kozorog v Sloveniji: včeraj, danes, jutri. Bled, 2022.

● 33. Robin M, Ferrari G, Akgül G, et al. Ancient mitochondrial and modern whole genomes unravel massive genetic diversity loss during near extinction of Alpine ibex. Mol Ecol 2022; 31(13): 3548–65.

● 34. Maudet C, Luikart G, Taberlet P. Development of microsatellite multiplexes for wild goats using primers designed from domestic Bovidae. Genet Sel Evol 2001; 33(suppl. 1): S193–203.

● 35. Maudet C, Miller C, Bassano B, et al. Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex (Capra ibex). Mol Ecol 2002; 11(3): 421–36.

● 36. Maudet C, Luikart G, Dubray D, von Hardenberg A, Taberlet P. Low genotyping error rates in wild ungulate faeces sampled in winter. Mol Ecol Notes 2004; 4(4): 772–5.

● 37. Quéméré E, Rossi S, Petit E, et al. Genetic epidemiology of the Alpine ibex reservoir of persistent and virulent brucellosis outbreak. Sci Rep 2020; 10(1): e4400. doi: 10.1038/s41598-020-61299-2

● 38. Ureña I, Ersmark E, Samaniego JA, et al. Unraveling the genetic history of the European wild goats. Quat Sci Rev 2018; 185: 189–98.

● 39. Kessler C, Brambilla A, Waldvogel D, et al. A robust sequencing assay of a thousand amplicons for the high-throughput population monitoring of Alpine ibex immunogenetics. Mol Ecol Resour 2022; 22(1): 66–85.

● 40. Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat Protoc 2018; 13(11): 2447–61.

● 41. Kocher TD, Thomas WK, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci 1989; 86(16): 6196–200.

● 42. Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochromeb gene of mammals. J Mol Evol 1991; 32(2): 128–44.

● 43. Rodríguez F, Albornoz J, Domínguez A. Cytochrome b pseudogene originated from a highly divergent mitochondrial lineage in genus Rupicapra. J Hered 2007; 98(3): 243–9.

● 44. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38(7): 3022–7.

● 45. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 2017; 34(12): 3299–302.

● 46. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16(1): 37–48.

● 47. Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol 2015; 6(9): 1110–6.

● 48. Schaschl H, Wandeler P, Suchentrunk F, Obexer-Ruff G, Goodman SJ. Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates. Heredity (Edinb) 2006; 97(6): 427–37.

● 49. Stipoljev S, Bužan E, Rolečková B, Iacolina L, Šprem N. MHC genotyping by SSCP and amplicon‐based NGS approach in chamois. Animals (Basel) 2020; 10(9): e1694. doi: 10.3390/ani10091694

● 50. Sebastian A, Herdegen M, Migalska M, Radwan J. Amplisas: a web server for multilocus genotyping using next-generation amplicon sequencing data. Mol Ecol Resour 2016; 16(2): 498–510.

● 51. Alasaad S, Fickel J, Rossi L, et al. Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: a case study from Iberian ibex × domestic goat in southern Spain. Acta Vet Scand 2012; 54(1): e56. doi: 10.1186/1751-0147-54-56

● 52. Herrmann LM, Brown WC, Lewis GS, Knowles DP. Identification and phylogenetic analysis of 15 MHC class II DRB1 β1 expressed alleles in a ewe–lamb flock. Immunogenetics 2005; 57(11): 855–63.

● 53. Portanier E, Garel M, Devillard S, et al. Both candidate gene and neutral genetic diversity correlate with parasite resistance in female Mediterranean mouflon. BMC Ecol 2019; 19(1): e12. doi: 10.1186/s12898-019-0228-x

● 54. Biebach I, Keller LF. A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex). Mol Ecol 2009; 18(24): 5046–58.

● 55. Maruyama T, Fuerst PA. Population Bottlenecks and Nonequilibrium models in population genetics: I. allele numbers when populations evolve from zero variability. Genetics 1984; 108(3): 745–63.

● 56. Allendorf FW. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 1986; 5(2): 181–90.

● 57. Wright S. Evolution in mendelian populations. Bull Math Biol 1990; 52(1/2): 241–95.

● 58. Sarasa M, Serrano E, Soriguer RC, et al. Negative effect of the arthropod parasite, Sarcoptes scabiei, on testes mass in Iberian ibex, Capra pyrenaica. Vet Parasitol 2011; 175(3/4): 306–12.

● 59. Espinosa J, Granados JE, Cano-Manuel FJ, et al. Sarcoptes scabiei alters follicular dynamics in female Iberian ibex through a reduction in body weight. Vet Parasitol 2017; 243: 151–6.

● 60. Pérez JM, López-Montoya AJ, Cano-Manuel FJ, et al. Development of resistance to sarcoptic mange in ibex. J Wildl Manage 2022; 86(5): e22224. doi: 10.1002/jwmg.22224

● 61. Ledger SEH, Rutherford CA, Benham C, et al. Wildlife comeback in Europe: opportunities and challenges for species recovery. London: Zoological Society of London, 2022.

● 62. Gebremedhin B, Ficetola GF, Naderi S, et al. Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian Walia ibex. Anim Conserv 2009; 12: 89–100.

● 63. Hassanin A, Lecointre G, Tillier S. The ‘evolutionary signal’ of homoplasy in proteincoding gene sequences and its consequences for a priori weighting in phylogeny. Comptes Rendus l’Académie des Sci - Ser III - Sci la Vie 1998; 321(7): 611–20.

● 64. Hassanin A, Ropiquet A, Couloux A, Cruaud C. Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol 2009; 68(4): 293–310.

Downloads

Published

2023-09-15

How to Cite

Bužan, E., Duniš, L., Bončina, A., Horvat, S., Pogorevc, N., Brambilla, A., Sölkner, J., Burger, P., Medugorac, I., & Boštjan Pokorny. (2023). FIRST INSIGHT INTO GENETIC DIVERSITY OF ALPINE IBEX (Capra ibex) IN SLOVENIA. Slovenian Veterinary Research, 60(3), 161–72. https://doi.org/10.26873/SVR-1788-2023

Issue

Section

Original Research Article