EVALUATION OF THE EFFECT OF TEMPERATURE ON THE TOXICITY OF LAMBDA-CYHALOTHRIN IN Dreissena polymorpha USING SOME BIOCHEMICAL BIOMARKERS

Authors

  • Nuran Cikcikoglu Yildirim * Laboratorian and Veterinarian Health Programme, Department of Veterinary Medicine, Pertek Sakine Genç Vocational School, Munzur University, 62000 Tunceli, Turkey, nurancyildirim@gmail.com
  • Osman Serdar Fisheries Faculty, Munzur University, 62000 Tunceli, Turkey
  • Zozan Ketenalp Department of Environmental Engineering, Munzur University, 62000 Tunceli, Turkey

DOI:

https://doi.org/10.26873/SVR-1714-2023

Keywords:

λ-cyhalothrin, D. polymorpha, oxidative stress, neurotoxicity, temperature

Abstract

Due to increasing climate change, it has become important to determine whether the dose-response relationship of organisms to some substances is affected by temperature. For this reason, in this study, it was aimed to reveal the effect of the temperature variable on the toxic response using the Dreissena polymorpha model organism and some of its biomarkers. For this purpose, acetylcholinesterase (AChE), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels in Dreissena polymorpha exposed to subletal concentrations of λ-cyhalothrin at different temperatures were measured using commercial ELISA kits.
According to the results obtained, there was a statistically significant increase in MDA levels in the groups exposed to λ-cyhalothrin, while a decrease in GSH levels was found. AChE levels were inhibited especially in the groups exposed high concentrartion of λcyhalothrin. It was also found that the inhibition levels increased depending on the application times. While SOD enzyme activity decreased, CAT enzyme activity increased depending on the exposure concentration. It has been observed that different temperature have different effects on the toxicity of λ-cyhalothrin. It was observed that λ-cyhalothrin caused oxidative stress and neurotoxicity, and the toxicity of λ-cyhalothrin changed depending on the temperature.

Vrednotenje vpliva temperature na toksičnost Lambda-cihalotrina v modelnem organizmu Dreissena polymorpha z uporabo biokemijskih označevalcev

Izvleček: Zaradi naraščajočih sprememb podnebja je pomembno ugotavljati, ali temperatura vpliva na razmerje med odmerkom in odzivom organizmov na nekatere snovi. Zato je bil namen te študije prikazati vpliv spremembe tempera­ture na toksični odziv modelnega organizma Dreissena polymorpha in nekaterih njegovih bioloških oiznačevalcev. V ta namen smo s komercialnimi testi ELISA merili koncentracijo acetilholinesteraze (AchE), katalaze (CAT), superoksid dismutaze (SOD), glutationa (GSH) in malondialdehida (MDA) v organizmu Dreissena polymorpha, izpostavljenim suble­talnim odmerkom λ-cihalotrina pri različnih temperaturah.            
V skupinah, izpostavljeni λ-cihalotrinu, se je statistično značilno povečala vsebnost MDA in zmanjšala vsebnost GSH. Ravni AChE so bile znižane zlasti v skupinah, ki so bile izpostavljene visoki koncentraciji λ-cihalotrina. Ugotovili smo tudi, da je bila rast inhibicije odvisna od časa aplikacije. Medtem ko se je aktivnost encima SOD zmanjšala, se je aktivnost encima CAT povečala glede na koncentracijo izpostavljenosti. Ugotovili smo, da različna temperatura različno vpliva na toksičnost λ-cihalotrina. λ-cihalotrin povzroča oksidativni stres in nevrotoksičnost, toksičnost λ-cihalotrina pa se spr­eminja glede na temperaturo.

Ključne besede: λ-cihalotrin; D. polymorpha; oksidativni stres; nevrotoksičnost; temperatura

References

1. Fetoui H, Makni M, Garoui EM, Zeghal N. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid. Exp Toxicol Pathol 2010; 62(6): 593–9. doi: 10.1016/j.etp.2009.08.004

2. Weston DP, Lydy MJ. Stormwater input of pyrethroid insecticides to an urban river. Environ Toxicol Chem 2012; 31(7): 1579–86. doi: 10.1002/etc.1847

3. Jabeen F, Chaudhry AS, Manzoor S, Shaheen T. Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks. Environ Monit Assess 2015; 187(2): 29. doi: 10.1007/s10661-015-4273-4

4. Tsaboula A, Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou- Mourkidou E. Environmental and human risk hierar-chy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate. Environ Int 2016; 91: 78–93. doi: 10.1016/j.envint.2016.02.008

5. Anderson TA, Salice CJ, Erickson RA, McMurry ST, Cox SB, Smith LM. Effects of landuse and precipitation on pesticides and water quality in Play a lakes of the southern high plains. Chemosphere 2013; 92(1): 84–90. doi: 10.1016/j. chemosphere.2013.02.054

6. Fetoui H, Garoui EM, Makniayadi F, Zeghal N. Oxidative stress induced by lambdacyhalothrin in rat erythrocytes and brain: attenuation by vitamin C. Environ Toxicol Pharmacol 2008; 26: 225–31. doi: 10.1016/j. etap.2008.04.002

7. Fetoui H, Garoui EM, Zeghal E. Lambda-cyhalothrininduced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Exp Toxicol Pathol 2009; 61: 189–96. doi: 10.1016/j.etp.2008.08.002

8. WHO. Environmental health criteria 240: principles and methods for the risk assessment of chemicals in food. Geneva: World Health Organization, 2009. https://www.who.int/docs/default-source/fos/summary-eng.pdf (30. 11. 2023)

9. Kale M, Rathore N, John S, Bhatnagar D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocyte: a possible involvement of reactive oxygen species. Toxicol Lett 1999; 105: 197–205. doi: 10.1016/s03784274(98)00399-3

10. Stajn A, Zikic RV, Ognjanovic B, Pavlovic SZ, Kostic MM, Petrovic VM. Effect of cadmium and selenium on the antioxidant defense system in rat kidneys. Comp Biochem Physiol 1997; 2: 167–72. doi: 10.1016/s0742-8413(97)00063-7

11. Ates B, Orun I, Talas ZS, Durmaz G, Yilmaz I. Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+. Fish Physiol Biochem 2008; 34: 53–9. doi: 10.1007/s10695-007-9146-5

12. Kumar A, Sharma B, Pandey RS. Assessment of stress in effect to pyrethroid insecticides, λ-cyhalothrin and cypermethrin, in a freshwater fish, Channa punctatus (Bloch). Cell Mol Biol 2012; 58: 153–9. doi: 10.1170/T935

13. Burr SA, Ray DE. Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicol Sci 2004; 77: 341–6. doi: 10.1093/toxsci/kfh027

14. Sharbidre AA, Vimal M, Priyanka P. Effect of Diazinon on acetylcholinesterase activity and lipid peroxidation of Poecilia reticulate. Res J Environ Toxicol 2011; 5: 152–61. doi: 10.3923/rjet.2011.152.161

15. Paul EA, Simonin HA. Toxicity of three mosquito Insecticides to cray fish. Bull Environ Contam Toxicol 2006; 76: 614–21. doi: 10.1007/s00128-006-0964-4

16. Mueller–Beilschmidt D. Toxicology and environmental fate of synthetic pyrethroids. J Pestic Reform 1990; 10: 32–7.

17. Assis HCDS, Nicareta L, Salvo LM, Klemz C, Truppel HJ, Calegari R. Biochemical biomarkers of exposure to deltamethrin in freshwater fish, Ancistrus multispinis. Braz Arch Biol Technol 2009; 52(6): 1401–7.

18. Leve De L, Kaplowitz N. Glutathione metabolism and its role in Hepatotoxicity. Pharmacol Therap 1991; 52: 287–305. doi: 10.1016/0163-7258(91)90029-l

19. Parvez S, Raisuddin S. Preexposure to copper modulates non-enzymatic antioxidants in liver of Channa punctata (Bloch) exposed to the herbicide paraquat. Bull Environ Contam Toxicol 2006; 76: 545–51. doi: 10.1007/s00128-006-0954-6

20. Mansour SA, Mossa AH. Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic Biochem Physiol 2009; 93: 34–9. doi: 10.1016/j. pestbp.2008.09.004

21. Poorter MD, Darby C, MacKay J. Marine Menace: alien invasive species in the marine environment. Geneva: IUCN, 2009 https://www.iucn.org/sites/default/files/import/downloads/marine_menace_en_1.pdf. (30. 11. 2023)

22. EEA. Climate change, impacts and vulnerability in Europe 2012: an indicator-based report. Copenhagen: European Environment Agency, 2012. https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012 (30. 11. 2023)

23. Riva C, Cristoni S, Binelli A. Effects of triclosan in the freshwater mussel Dreissena polymorpha: a proteomic investigation. Aquat Toxicol 2012; 118: 62–71. doi: 10.1016/j.aquatox.2012.03.013.

24. Zani PA, Swanson, SET, Corbin D, et al. Geographic variation in tolerance of transient thermal stress in the mosquito Wyeomyia Smithii. Ecology 2005; 86(5): 1206–11. doi: 10.1890/04-1248

25. Muturı EJ, Lampman R, Costanzo K, Alto BW. Effect of temperature and insecticide stress on life-history traits of Culex restuans and Aedes albopictus (Diptera: Culicidae). J Med Entomol 2011; 48(2): 243–50. doi: 10.1603/me10017

26. Velisek J, Wlasow T, Gomulka P, et al. Effects of cyperhethrin on rainbow trout (Oncorhynchus mykiss). Vet Med 2006; 51(10): 469–76.

27. Kutluyer F, Erisir M, Benzer F, Ögretmen F, Inanan EB. The in vitro effect of Lambdacyhalothrin on quality and antioxidant responses of rainbow trout Oncorhynchus mykiss spermatozoa. Environ Toxicol Pharmacol 2015; 40: 855–60. doi: 10.1016/j.etap.2015.09.018

28. Op De Beeck L, Verheyen J, Olsen K, Stoks R. Negative effects of pesticides under global warming can be counteracted by a higher degradation rate and thermal adaptation. J Appl Ecol 2017; 54: 1847–55. doi: 10.1111/1365-2664.12919

29. MacDonald RW, Harner T, Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 2005; 342: 5–86. doi: 10.1016/j. scitotenv.2004.12.059

30. Tasmin R, Shimasaki Y, Tsuyama M, et al. Elevated water temperature reduces the acute toxicity of the widely used herbicide diuron to a green alga, Pseudokirchneriella subcapitata. Environ Sci Pollut Res 2014; 21(2): 1064–70. doi: 10.1007/s11356-013-1989-y

31. Singh SK, Singh SK, Yadav RP. Toxicological and biochemical alterations of Cypermethrin (Synthetic Pyrethroids) against fresh water teleost fish Colisa fasciatus in different season. World J Zool 2010; 5: 25–32.

32. Toth SJ Jr, Sparks TC. Effect of temperature on toxicity and knock-down activity of cis Permethrin Esfenvalerate and A-Cyhalothrin in the Cabbage Looper (Lepidoptera: Noctuidae). J Econ Entomol 1990; 83(2): 342–6. doi: 10.1093/jee/83.2.342

33. Garcia M, Scheffczyk A, Garcia T, Römbke TJ. The effects of the insecticide lambdaCyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions. Environ Pollut 2011; 159: 398–400. doi: 10.1016/j.envpol.2010.10.038

34. Göksu MZL, Manasırlı M, Azgın C. Acute Toxicity of Insecticides Lambda-Cyhalothrin and Cypermethrin on Oreochromis niloticus (L., 1754) Larvae (bioassay). Yunus Arş Bül 2015; (1): 23–6.

35. Kumar D, Kumari M. Assessment of toxicity of lambda-cyhalothrin for Heteropneustes fossilis and Channa punctatus. J Adv Lab Res Biol 2018; 9(4): 95–9.

36. Chatterjee A, Bhattacharya R, Chatterjee S, Chandra Sah, N. Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Com Biochem Physiol Part C Toxicol Pharmacol 2021; 242: 108943. doi: 10.1016/j.cbpc.2020.108943

37. Chatterjee A, Bhattacharya R, Chatterjee S, Saha NC. λ cyhalothrin induced toxicity and potential attenuation of hematological, biochemical, enzymological and stress biomarkers in Cyprinus carpio L. at environmentally relevant concentrations: a multiple biomarker approach. Com Biochem Physiol Part C Toxicol Pharmacol 2021; 250: 109164. doi: 10.1016/j.cbpc.2021.109164

38. Bibi N, Zuberi A, Naeem M, Ullah I, Sarwar H, Atika B. Evaluation of acute toxicity of karate and its sublethal effects on protein and acetylcholinestrase activity in Cyprinus carpio. Int J Agric Biol 2014; 16: 731–7.

39. Yekeen TA, Fawole OO, Bakare AA. Evaluation of toxic effects of lambdacyhalothrin on the haematology and selected biochemical parameters of African catfish Clarias gariepinus. Zool Ecol 2013; 23(1): 45–52. doi: 10.1080/21658005.2013.767613

40. Yang X, Song Y, Kai J, Cao X. Enzymatic biomarkers of earthworms Eisenia fetida in response to individual and combined cadmium and pyrene. Ecotox Environ Safe 2012; 86: 162–7. doi: 10.1016/j. ecoenv.2012.09.022

41. Okechukwu EO, Auta J. The effects of sublethal doses of lambda-cyhalothrin on some biochemical characteristics of the African Catfish Clarias gariepinus. J Biol Sci 2007; 7(8): 1473–7. doi: 10.3923/jbs.2007.1473.1477

42. Ezenwosu SU, Nnamonu EI, Odo GE, Ikele BC, Ani OC. Evaluation of lambdacyhalothrin oxidative stress and gonad histoarchitecture toxicity potency in Clarias gariepinus. J Basic Appl Zool 2021; 82: 3. doi: 10.1186/s41936-020-00201-y

43. Koç E, Akçay M. Capoeta capoeta’da lambda cyhalothrin’in biyokimyasal ve moleküler karakterizasyonu biochemical and molecular characterization of lambda cyhalothrin in Capoeta capoeta. Iğdır Univ J Inst Sci Tech 2018; 8(2): 57–63. doi: 10.21597/jist.427884

44. Serdar O, Aydın R, Çalta M. Determination of some biochemical parameters changes in Gammarus pulex exposed to cadmium at different temperature and different concentration. J Limnol Fish Res 2021; 7(1): 69–76. doi: 10.17216/limnofish.748137

45. Sparks TC, Shour MH, Wellemeyer EG. Temperature-toxicity relationships of pyrethroids on three lepidopterans. J Econ Ent 1982; 75: 64346. doi: 10.1093/jee/75.4.643

46. El-Demerdash FM. Cytotoxic effect of fenitrothion and lambda-cyhalothrin mixture on lipid peroxidation and antioxidant defense system in rat kidney. J Environ Sci Health B 2012; 47: 262–8. doi: 10.1080/03601234.2012.636589

47. Tolosa I, Readman JW, Blaevoet A, Ghilini S, Bartocci J, Horvat M. Contamination of Mediterranean (Cote d’Azur) coastal waters by organotins and IRGAROL 1051 used in antifouling paints. Marine Pol Bull 1996; 32: 335–41. doi: 10.1016/0025326X(96)00013-6

48. Suresh A. Sivaramakrishna B. Victoriamma PC. Radhakrishniah K. Comparative study on the inhibition of acetylcholinesterase activity in the freshwater fish Cyprinus carpio by mercury and zinc. Biochem Inter 1992; 26: 367–75.

49. Razik MARAMA, El-Raheem AMA. Biochemical and histological effects of lambda cyhalothrin, emamectin benzoate and indoxacarb on German Cockroach, Blattella germanica L. Am J Biochem Mol Biol 2019; 9: 7–16. doi: 10.3923/ajbmb.2019.7.16

50. Vieira CED, Martinez CBR. The pyrethroid λ-cyhalothrin induces biochemical, genotoxic, and physiological alterations in the teleost Prochilodus lineatus. Chemosphere 2018; 210: 958–67. doi: 10.1016/j. chemosphere.2018.07.115

51. Singh S, Tiwari RK, Pandey RS. Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicol Rep 2018; 5: 85–9. doi: 10.1016/j. toxrep.2017.12.006

52. Pradhan S, Nair MR, Krishnaswami S. Lipid solubility as a factor in the toxicity of contact insecticides. Nature 1952; 170: 619620. doi: 10.1038/170619a0

Downloads

Published

2024-06-19

How to Cite

Cikcikoglu Yildirim, N., Serdar, O., & Ketenalp, Z. (2024). EVALUATION OF THE EFFECT OF TEMPERATURE ON THE TOXICITY OF LAMBDA-CYHALOTHRIN IN Dreissena polymorpha USING SOME BIOCHEMICAL BIOMARKERS. Slovenian Veterinary Research, 61(2), 105–113. https://doi.org/10.26873/SVR-1714-2023

Issue

Section

Original Research Article