ANTIMICROBIAL RESISTANCE PROFILING OF SELECTED E. coli ISOLATES AND DETECTION OF ESBL/PAMPC-ENCODING GENES IN BROILER FLOCKS IN BOSNIA AND HERZEGOVINA USING REAL-TIME PCR
DOI:
https://doi.org/10.26873/SVR-1630-2025Keywords:
antimicrobial resistance, E. coli, broilers, Bosnia and HerzegovinaAbstract
Antimicrobial resistance (AMR) is a growing global issue, driven by the nontargeted use of antimicrobials in livestock. Poultry, particularly broilers, may serve as significant reservoirs for resistant Escherichia (E.) coli strains. This study aimed to isolate E. coli from broiler flocks and evaluate their in vitro susceptibility towards β-lactams, cephalosporins, carbapenems, tetracyclines, and fluoroquinolones. Additionally, a multiplex real-time PCR assay was used to detect extended-spectrum β-lactamase (ESBL)- and carbapenemase-encoding genes. A total of 48 commensal E. coli isolates from broiler flocks in Bosnia and Herzegovina (BiH) were analyzed. Phenotypic resistance, determined using the disc diffusion method, was observed for ampicillin (87.5%), amoxicillin/clavulanic acid (62.5%), cefepime (41.7%), cefoxitin (45.8%), cefotaxime (50.0%), ceftazidime (47.9%), azithromycin (58.3%), ciprofloxacin (66.7%), and tetracycline (72.9%). PCR analysis confirmed blaTEM, blaCTX-M and blaCMY genes in 24 isolates (50%), whereas blaSHV and carbapenemase-encoding genes (blaKPC, blaNDM, blaOXA-48, blaVIM and blaGES) were not detected. The high prevalence of multidrug-resistant E. coli strains highlights the need for enhanced antimicrobial stewardship in poultry production. Reducing antibiotic use, promoting alternative disease control measures, and implementing systematic resistance monitoring programs are crucial to reduce AMR in broiler farms and potential spill over to public health.
References
AASV. FDA Announces Implementation of GFI #213, Outlines Continuing Efforts to Address Antimicrobial Resistance. Perry: American Association of Swine Veterinarians, 2017. https://www.aasv.org/2017/01/fda-announces-implementation-of-gfi-213-outlines-continuing-efforts-to-address-antimicrobial-resistance/ (20. 1. 2025).
Agyare C, Boamah VE, Zumbi CN, Osei FB. Antibiotic use in poultry production and its effects on bacterial resistance. In: Antimicrob resistance: a global threat. London: IntechOpen, 2018: 33–50.
Ahmed AM, Shimamoto T, Shimamoto T. Molecular characterization of multidrugresistant avian pathogenic Escherichia coli isolated from septicemic broilers. Int J Med Microbiol 2013; 303(8): 475–83. doi: 10.1016/j.ijmm.2013.06.009
Almugadam BS, Ali NO, Ahmed AB, Ahmed EB, Wang L. Prevalence and antibiotics susceptibility patterns of carbapenem resistant Enterobacteriaceae. J Bacteriol Mycol 2018; 6(3):187–90. doi: 10.15406/jbmoa.2018.06.00201
Bachiri T, Bakour S, Lalaoui R, et al. Occurrence of carbapenemase-producing Enterobacteriaceae isolates in the wildlife: first report of OXA-48 in wild boars in Algeria. Microb Drug Resist 2018; 24(3): 337–45. doi: 10.1089/mdr.2016.0323
Blaak H, van Hoek AH, Hamidjaja RA, et al. Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS One 2015; 10(8): e0135402. doi: 10.1371/journal.pone.0135402
Bonardi S, Pitino R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital J Food Saf 2019; 8(2): 7956. doi: 10.4081/ijfs.2019.7956
Borowiak M, Szabo I, Baumann B, et al. VIM-1-producing Salmonella Infantis isolated from swine and minced pork meat in Germany. J Antimicrob Chemother 2017; 72(7): 2131–3. doi: 10.1093/jac/dkx101
Braun SD, Ahmed MF, El-Adawy H, et al. Surveillance of extended-spectrum betalactamase-producing Escherichia coli in dairy cattle farms in the Nile Delta, Egypt. Front Microbiol 2016; 7: 1020. doi: 10.3389/fmicb.2016.01020
CLSI M100. Performance standards for antimicrobial susceptibility testing. 35th ed. Wayne: Clinical and Laboratory Standards Institute; 2025.
Dadgostar P: Antimicrobial resistance: implications and costs. Infect Drug Resist 2019; 12: 3903. doi: 10.2147/IDR.S234610
Davey P, Wilcox MH, Irving W, Thwaites G. Antimicrobial chemotherapy. 7th ed. Oxford: Oxford University Press, 2015: 91–100.
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417–33. doi: 10.1128/MMBR.00016-10
EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0. Växjö: The European Committee on Antimicrobial Susceptibility Testing, 2021. https://megumed.de/wp-content/uploads/2021/06/v_11.0_Breakpoint_Tables.pdf (20. 1. 2025).
European Commission. Ban on antibiotics as growth promoters in animal feed enters into effect. Brussels: Europen Commission, 2005. https://ec.europa.eu/commission/presscorner/detail/en/IP_05_1687 (20. 1. 2025).
European Food Safety Authority. Report from the Task Force on Zoonoses Data Collection including guidance for harmonized monitoring and reporting of antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. from food animals. EFSA J 2008; 141: 1–44. doi: 10.2903/j.efsa.2008.141r
European Food Safety Authority. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22(2): 8583. doi: 10.2903/j.efsa.2024.8583
Falgenhauer L, Imirzalioglu C, Oppong K, et al. Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana. Front Microbiol 2019; 9: 3358. doi: 10.3389/fmicb.2018.03358
Fetahagić M, Ibrahimagić A, Uzunović S, et al. Detection and characterisation of extended-spectrum and plasmid-mediated AmpC β-lactamase produced by Escherichia coli isolates found at poultry farms in Bosnia and Herzegovina. Arh Hig Rada Toksikol 2021; 72(4): 305–14. doi: 10.2478/aiht-2021-72-3560
Fischer J, Rodríguez I, Schmoger S, et al. Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J Antimicrob Chemother 2012; 67(7): 1793–5. doi: 10.1093/jac/dks108
Fischer J, Rodríguez I, Schmoger S, et al. Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. J Antimicrob Chemother 2013; 68(2): 478–80. doi: 10.1093/jac/dks393
Fischer J, San José M, Roschanski N, et al. Spread and persistence of VIM-1 carbapenemase-producing Enterobacteriaceae in three German swine farms in 2011 and 2012. Vet Microbiol 2017; 200: 118–23. doi: 10.1016/j.vetmic.2016.04.026
Fischer J, Schmoger S, Jahn S, Helmuth R, Guerra B. NDM-1 carbapenemaseproducing Salmonella enterica subsp. enterica serovar Corvallis isolated from a wild bird in Germany. J Antimicrob Chemother 2013; 68(12): 2954–6. doi: 10.1093/jac/dkt260
Gao L, Hu J, Zhang X, et al. Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. J Mol Microbiol Biotechnol 2014; 24(4): 279–85. doi: 10.1159/000365786
Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended spectrum betalactamases: definition, classification and epidemiology. Curr Issues Mol Biol 2015; 17: 11–21. doi: 10.21775/cimb.017.011
Gholami-Ahangaran M, Moravvej AH, Safizadeh Z, Nogoorani VS, Zokaei M, Ghasemian SO. The evaluation of ESBL genes and antibiotic resistance rate in Escherichia coli strains isolated from meat and intestinal contents of turkey in Isfahan, Iran. Iran J Vet Res 2021; 22(4): 318–25. doi: 10.22099/ijvr.2021.39493.5737
Gioushy M, Abdelaziz Soliman EE, Elkenany RM, et al. Molecular characterization, virulence, and antimicrobial susceptibility of Mycoplasma bovis associated with chronic mastitis in dairy cows. Slov Vet Res 2024; 61(4): 271–9. doi: 10.26873/SVR-1882-2024
Guerra B, Fischer J, Helmuth R. An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol 2014; 171(3/4): 290–7. doi: 10.1016/j.vetmic.2014.02.001
Hadžić-Hasanović V, Jerković-Mujkić A, Hasanović E, Bačić A, Hukić M. Phenotypic and genotypic detection of ESBL-producing E. coli isolates from chicken skin in Bosnia and Herzegovina. Med Glas (Zenica) 2020; 17(2): 308–15. doi: 10.17392/1206-20
Hamza E, Dorgham SM, Hamza DA. Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. J Glob Antimicrob Resist 2016; 7: 8–10. doi: 10.1016/j.jgar.2016.06.004
Heredia N, García S. Animals as sources of food-borne pathogens: a review. Anim Nutr 2018; 4(3): 250–5. doi: 10.1016/j.aninu.2018.04.006
Jafari RA, Motamedi H, Maleki E, Ghanbarpour R, Mayahi M. Phylogenetic typing and detection of extended-spectrum β-lactamases in Escherichia coli isolates from broiler chickens in Ahvaz, Iran. Vet Res Forum 2016; 7(3): 227–33.
Kazemian H, Heidari H, Ghanavati R, et al. Phenotypic and genotypic characterization of ESBL-, AmpC-, and carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates. Med Princ Prac 2019; 28(6): 547–51. doi: 10.1159/000500311
Kika TS, Cocoli S, Pelić DL, Puvača N, Lika E, Pelić M. Colibacillosis in modern poultry production. J Agron Technol Eng Manag 2023; 6(6): 975–87. doi: 10.55817/YZFA3391
Köck R, Daniels-Haardt I, Becker K, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 2018; 24(12): 1241–50. doi: 10.1016/j.cmi.2018.04.004
Laube H, Friese A, Von Salviati C, et al. Longitudinal monitoring of extendedspectrum-beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Appl Environ Microbiol 2013; 79(16): 4815–20. doi: 10.1128/AEM.00856-13
Liu BT, Song FJ, Zou M, Zhang QD, Shan H. High incidence of Escherichia coli strains coharboring mcr-1 and bla NDM from chickens. Antimicrob Agents Chemother 2017; 61(3): e02347–16. doi: 10.1128/AAC.02347-16
Liu X, Liu H, Li Y, Hao C. High prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front Microbiol 2016; 7: 1843. doi: 10.3389/fmicb.2016.01843
Liu Z, Wang Y, Walsh TR, et al. Plasmid-mediated novel bla NDM-17 gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain. Antimicrob Agents Chemother 2017; 61(5): e02233–16. doi: 10.1128/AAC.02233-16
Madec JY, Haenni M, Nordmann P, Poirel L. Extended-spectrum βlactamase/AmpC-and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 2017; 23(11): 826–33. doi: 10.1016/j.cmi.2017.01.013
Melo LC, Boisson MN, Saras E, et al. OXA-48-producing ST372 Escherichia coli in a French dog. J Antimicrob Chemother 2017; 72(4): 1256–8. doi: 10.1093/jac/dkw531
Mo SS, Norström M, Slettemeås JS, Løvland A, Urdahl AM, Sunde M. Emergence of AmpC-producing Escherichia coli in the broiler production chain in a country with a low antimicrobial usage profile. Vet Microbiol 2014; 171(3/4): 315–20. doi: 10.1016/j.vetmic.2014.02.002
Mollenkopf DF, Stull JW, Mathys DA, et al. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother 2017; 61(2): e01298–16. doi: 10.1128/AAC.01298-16
Montoro-Dasí L, Villagrá A, Sevilla-Navarro S, Pérez-Gracia MT, Vega S, Marin C. The dynamic of antibiotic resistance in commensal Escherichia coli throughout the growing period in broiler chickens: fast-growing vs. slow-growing breeds. Poult Sci 2020; 99(3): 1591–7. doi: 10.1016/j.psj.2019.10.080
Much P, Sun H, Lassnig H, Koeberl-Jelovcan S, Schliessnig H, Stueger HP. Differences in antimicrobial resistance of commensal Escherichia coli isolated from caecal contents of organically and conventionally raised broilers in Austria, 2010– 2014 and 2016. Prev Vet Med 2019; 171: 104755. doi: 10.1016/j.prevetmed.2019.104755
Muktan B, Shrestha UT, Dhungel B, et al. Plasmid mediated colistin resistant mcr-1 and co-existence of OXA-48 among Escherichia coli from clinical and poultry isolates: first report from Nepal. Gut Pathog 2020; 12: 44. doi: 10.1186/s13099-020-00382-5
Nolan LK, Barnes HJ, Vaillancourt JP, Abdul-Azit T, Louge CM. Colibacillosis. In: Swayne DE, ed. Diseases of poultry. 13th ed. Ames: John Wiley & Sons, 2013: 751–808.
Palma E, Tilocca B, Roncada P. Antimicrobial resistance in veterinary medicine: an overview. Int J Mol Sci 2020; 21(6): 1914. doi: 10.3390/ijms21061914
Pattison M, Paul M, Janet MB, Dennis A. Poultry diseases. 6th ed. Edinburgh: Elsevier, 2007: 145–73.
Persoons D, Dewulf J, Smet A, et al. Prevalence and persistence of antimicrobial resistance in broiler indicator bacteria. Microb Drug Resist 2010; 16(1): 67–74. doi: 10.1089/mdr.2009.0062
Peyclit L, Baron SA, Rolain JM. Drug repurposing to fight colistin and carbapenem-resistant bacteria. Front Cell Infect Microbiol 2019; 9: 193. doi: 10.3389/fcimb.2019.00193
Poirel L, Madec JY, Lupo A, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr 2018; 6(4): 10.1128/microbiolspec.arba-0026-2017. doi: 10.1128/microbiolspec.ARBA-0026-2017
Poirel L, Stephan R, Perreten V, Nordmann P. The carbapenemase threat in the animal world: the wrong culprit. J Antimicrob Chemother 2014; 69(7): 2007–8. doi: 10.1093/jac/dku054
Pourhossein Z, Asadpour L, Habibollahi H, Shafighi ST. Antimicrobial resistance in fecal Escherichia coli isolated from poultry chicks in northern Iran. Gene Rep 2020; 21(20): 100926. doi: 10.1016/j.genrep.2020.100926
Pulss S, Semmler T, Prenger-Berninghoff E, Bauerfeind R, Ewers C. First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1. Int J Antimicrob Agents 2017; 50(2): 232–6. doi: 10.1016/j.ijantimicag.2017.03.014
Ramos S, Silva V, Dapkevicius MLE, et al. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: health implications of extended spectrum β-lactamase (ESBL) production. Animals (Basel) 2020; 10(12): 2239. doi: 10.3390/ani10122239
Randall LP, Clouting C, Horton RA, et al. Prevalence of Escherichia coli carrying extended-spectrum β-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother 2011; 66(1): 86–95. doi: 10.1093/jac/dkq396
Roschanski N, Fischer J, Guerra B, Roesler U. Development of a multiplex realtime PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One 2014; 9(7): e100956. doi: 10.1371/journal.pone.0100956
Roschanski N, Friese A, von Salviati-Claudius C, et al. Prevalence of carbapenemase producing Enterobacteriaceae isolated from German pig-fattening farms during the years 2011–2013. Vet Microbiol 2017; 200: 124–9. doi: 10.1016/j.vetmic.2015.11.030
Roschanski N, Hadziabdic S, Borowiak M, et al. Detection of VIM-1-producing enterobacter cloacae and Salmonella enterica serovars Infantis and Goldcoast at a breeding pig farm in Germany in 2017 and their molecular relationship to former VIM-1-Producing S. infantis isolates in german livestock production. mSphere 2019; 4(3): e00089-19. doi: 10.1128/mSphere.00089-19
Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult Sci 2019; 98(4): 1791–804. doi: 10.3382/ps/pey539
Rulebook on Conditions for Trade in Medicinal Products Used in Veterinary Medicine (''Official Gazette of the FBiH'' No.: 5/10)]. In Bosnian. 2010.
Rulebook on the manner of prescribing and dispensing medicines used in veterinary medicine ("Official Gazette of FBiH" No.: 54/99)]. In Bosnian. 1999.
Saliu EM, Vahjen W, Zentek J. Types and prevalence of extended–spectrum beta– lactamase producing Enterobacteriaceae in poultry. Anim Health Res Rev 2017; 18(1): 46–57. doi: 10.1017/S1466252317000020
Silva N, Carvalho I, Currie C, Sousa M, Igrejas G, Poeta P. Extended-spectrum-β-lactamase and carbapenemase-producing Enterobacteriaceae in food-producing animals in Europe: an impact on public health? In: Capelo-Martinez JL, eds. Antibiotic drug resistance. Hoboken: John Wiley & Sonc, 2019: 261–73. doi: 10.1002/9781119282549.ch12
Stilec V, Durcik M, Peterka M. Rediscovering phage therapy: promising approach for combating antimicrobial resistance. Slov Vet Res 2024; 61(2): 77–80. doi: 10.26873/SVR-2063-2024
Swayne RL, Ludlam HA, Shet VG, Woodford N, Curran MD. Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo-(class A and D) carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents 2011; 38(1): 35–8. doi: 10.1016/j.ijantimicag.2011.03.010
Šumonja I, Kotnik T. Skin dysbiosis in atopic dogs: is phage therapy an alternative to antibiotics? Slov Vet Res 2024; 61(2): 85–96. doi: 10.26873/SVR-1880-2024
The veterinary law in Bosnia and Herzegovina. Off J B&H 2022; 34(2): 1–65. https://www.vet.gov.ba/pdffiles/Zakon_O_Vetrinarstvu/Veterinary%20Law.pdf (20. 1. 2025).
Thomas C, Idler C, Ammon C, Amon T. Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting. Waste Manag 2020; 105: 110–8. doi: 10.1016/j.wasman.2020.01.031
Thomrongsuwannakij T, Narinthorn R, Mahawan T, Blackall PJ. Molecular and phenotypic characterization of avian pathogenic Escherichia coli isolated from commercial broilers and native chickens. Poult Sci 2022; 101(1): 101527. doi: 10.1016/j.psj.2021.101527
Urmi UL, Nahar S, Rana M, et al. Genotypic to phenotypic resistance discrepancies identified involving β-lactamase genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in uropathogenic Klebsiella pneumoniae. Infect Drug Resist 2020; 13: 2863. doi: 10.2147/IDR.S262493
van der Zee A, Roorda L, Bosman G, et al. Multi-centre evaluation of real-time multiplex PCR for detection of carbapenemase genes OXA-48, VIM, IMP, NDM and KPC. BMC Infect Dis 2014; 14: 27. doi: 10.1186/1471-2334-14-27
Vangchhia BL. Genetic structure and antimicrobial resistance of foodborne Escherichia coli in Australia. The Australian National University, Research School of Biology, 2017. Doctoral thesis.
Vinueza-Burgos C, Ortega-Paredes D, Narváez C, De Zutter L, Zurita J. Characterization of cefotaxime resistant Escherichia coli isolated from broiler farms in Ecuador. PLoS One 2019; 14(4): e0207567. doi: 10.1371/journal.pone.0207567
Wall BA, Mateus AL, Marshall L, Pfeiffer DU. Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. Rome: Food and Agriculture Organization of the United Nations, 2016. https://openknowledge.fao.org/server/api/core/bitstreams/95efae06-4da2-4689-b12a-1b33fffc2244/content (20. 1. 2025).
WHO. Critically important antimicrobials for human medicine. 6th ed. Geneva: World Health Organization, 2019. https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (20. 1. 2025).
Wright GD. Q&A: antibiotic resistance: where does it come from and what can we do about it?. BMC Biol 2010; 8: 123. doi: 10.1186/1741-7007-8-123
Yousfi M, Touati A, Mairi A, et al. Emergence of carbapenemase-producing Escherichia coli isolated from companion animals in Algeria. Microb Drug Resist 2016; 22(4): 342–6. doi: 10.1089/mdr.2015.0196
Zhang Z, Zhai Y, Guo Y, et al. Characterization of Unexpressed ExtendedSpectrum Beta-Lactamase Genes in Antibiotic–Sensitive Klebsiella pneumoniae Isolates. Microb Drug Resist 2018; 24(6): 799–806. doi: 10.1089/mdr.2017.0018
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Amira Koro-Spahić, Sead Hadžiabdić, Teufik Goletić, Amer Alić, Aida Kustura, Adis Softić, Emina Residbegović *

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.