EXPRESSION OF INSULIN, GLUCAGON, SOMATOSTATIN, AND PANCREATIC POLYPEPTIDE IN THE PANCREAS OF THE EURASIAN MOORHEN (Gallinula chloropus)

Authors

  • Ahmed Abdellatif Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt, abdellatif_ma@mans.edu.eg

DOI:

https://doi.org/10.26873/SVR-1616-2023

Keywords:

pancreas, islet, insulin, glucagon, somatostatin, polypeptide, diabetes

Abstract

The pancreas is a complex gland that possesses both endocrine and exo-crine functions. The present study investigated the gross anatomy, histochemical fea-tures, and immunohistochemical expression of insulin, glucagon, somatostatin, and pancreatic polypeptide in the pancreas of the Eurasian moorhen. Grossly, the pancreas consisted of three duodenal lobes and unpaired splenic and gastric lobes. The pancre-atic capsule appeared thin with no distinct lobulation pattern. Three islet types were observed namely alpha, beta, and mixed types. The alpha-type islets formed mainly of glucagon- and somatostatin-expressing cells. The beta-type islets appeared relatively smaller than the two other islet types and formed predominately of insulin-expressing cells with a limited number of other endocrine cells. The mixed islets were formed by almost equal proportions of insulin-, glucagon- and somatostatin-expressing cells. A higher number of alpha-type islets was observed in the splenic lobe than in other pan-creatic lobes. Unlike other pancreatic endocrine cells which appeared oval or triangular in shape, somatostatin-expressing cells appeared with irregular outlines with cytoplas-mic processes contacting each other’s forming a meshwork within the islet. The results of this study revealed species-specific features of the endocrine and exocrine pancreas in the Eurasian moorhen and could suggest pancreatic functional differences depend-ing on feeding habits.

Izražanje insulina, glukagona, somatostatina in pankreatičnega polipeptida v trebušni slinavki evrazijskega zelenonoge tukalice (Gallinula chloropus)

Izvleček: Trebušna slinavka je kompleksna žleza z endokrino in eksokrino funkcijo. V tej študiji smo preučevali splošno anatomijo, histokemične značilnosti in imunohistokemično izražanje inzulina, glukagona, somatostatina in pankreas-nega polipeptida v trebušni slinavki evrazijske zelenonoge tukalice. Makroskopsko je bila trebušna slinavka sestavljena iz treh dvanajstnikovih režnjev ter neparnih vraničnega in želodčnega režnja. Kapsula trebušne slinavke je bila tanka, brez izrazitega vzorca lobulacije. Opazni so bili trije tipi otočkov - alfa, beta in mešani. Otočki tipa alfa so bili sestavljeni predvsem iz celic, ki so izražale glukagon in somatostatin. Otočki tipa beta so bili relativno manjši od drugih dveh tipov otočkov in sestavljeni pretežno iz celic, ki so izražale inzulin ter omejenega števila drugih endokrinih celic. Mešani tipi otočkov so bili sestavljeni iz enakega deleža celic, ki izražajo inzulin, glukagon in somatostatin. V vraničnem režnju je bilo opazno več otočkov tipa alfa kot v drugih režnjih trebušne slinavke. V primerjavi z drugimi endokrinimi celicami trebušne slinavke, ki so bile ovalne ali trikotne oblike, so bile celice, ki izražajo somatostatin, nepravilnih obrisov s citoplazems-kimi izrastki, ki so se stikali med seboj in tvorili mrežo znotraj otočka. Rezultati te študije so razkrili vrstno specifične značilnosti endokrine in eksokrine trebušne slinavke pri evrazijski zelenonogi tukalici in bi lahko nakazovali funkcionalne razlike v delovanju trebušne slinavke glede na prehranjevalne navade.

Ključne besede: trebušna slinavka; otoček; inzulin; glukagon; somatostatin; polipeptid; sladkorna bolezen

References

● 1. König HE, Liebich H-G, Korbel R, Klupiec C. Digestive system (apparatus digestorius). In: König HE, Korbel R, Liebich HG, eds. Avian anatomy: textbook and colour atlas. Sheffield: 5M Publising, 2016: 92–117.

● 2. de Boer P, Giepmans BN. State‐of‐the‐art microscopy to understandislets of Langerhans: what to expect next? Immuno Cell Biol 2021; 99:509–20.

● 3. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: acomparative study. Islets 2009; 1: 129-136.

● 4. Wallner-Pendleton EA, Rogers D, Epple A. Diabetes mellitus in a red-tailed hawk (Buteo jamaicensis). Avian Pathol 1993; 22: 631–5.

● 5. Pilny AA, Luong R. Diabetes mellitus in a chestnut-fronted macaw (Ara severa). J Avian Med Surg 2005; 19: 297–302.

● 6. Cavicchioli L, Zappulli V, Beffagna G, et al. Histopathological and immunohistochemical study of exocrine and endocrine pancreatic lesions in avian influenza A experimentally infected turkeys showing evidence of pancreatic regeneration. Avian Pathol 2015; 44: 498–508.

● 7. Rehman ZU, Ren S, Butt SL, et al. Newcastle disease virus induced pathologies severely affect the exocrine and endocrine functions ofthe pancreas in chickens. Genes (Basel) 2021; 12: e495. doi: 10.3390/genes12040495

● 8. Convention on Biological Diversity. Global Biodiversity InformationFacility (GBIF). Montreal: Convention on Biological Diversity, 2023. https://www.cbd.int/cooperation/csp/gbif.shtml (18. 8. 2023)

● 9. Bannor BK, Kiviat E. Common Moorhen (Gallinula chloropus). In: Poole AF, Gill B, eds. The birds of North America online. Ithaca: Cornell Lab of Ornithology, 2002.

● 10. Avibase: the world bird database. Wellington: Avibase, 2023. https://avibase.bsc-eoc.org/avibase.jsp?lang=SL&pg=home (18. 8. 2023)

● 11. Taylor B. Rails: guide to the rails, crakes, gallinules and coots of theworld. London: Yale University Press, 1999.

● 12. Abdellatif AM, Oishi H, Itagaki T, et al. β-cell-specific Mafk overexpression impairs pancreatic endocrine cell development. PloS One 2016;11: e0150010. doi: 10.1371/journal.pone.0150010

● 13. Suvarna KS, Layton C, Bancroft JD. Bancroft’s theory and practice ofhistological techniques. 8th ed. London: Elsevier, 2019.

● 14. Baskin DG. A Historical perspective on the identification of cell typesin pancreatic islets of langerhans by staining and histochemical techniques. J Histochem Cytochem 2015; 63: 543–58.

● 15. Abdellatif AM. Evaluating the distribution of T-lymphocytes andS-phase proliferating cells across the nasal mucosa of dromedarycamel (Camelus dromedarius). Tissue Cell 2021; 72: e101580. doi:10.1016/j.tice.2021.101580

● 16. Farouk SM, Abdellatif AM, Metwally E. Outer and inner mitochondrial membrane proteins TOMM40 and TIMM50 are intensively concentrated and localized at Purkinje and pyramidal neurons in the New Zealandwhite rabbit brain. Anat Rec 2022; 305: 209–21.

● 17. Abdellatif, AM. Structure of the Eurasian moorhen spleen: A comprehensive study using gross anatomy, light, and transmission electron microscopy. Microscopy Research and Technique 2021; 84:1696–1709.

● 18. Abdellatif, AM, Farag, A, Metwally, E. Anatomical, histochemical, and immunohistochemical observations on the gastrointestinal tract of Gallinula chloropus (Aves: Rallidae). BMC Zoology 2022; 7: 1-12.

● 19. Rueden CT, Schindelin J, Hiner MC, et al. ImageJ2: ImageJ for thenext generation of scientific image data. BMC Bioinformatics 2017; 18: e529. doi: 10.1186/s12859-017-1934-z

● 20. Pollock C. Carbohydrate regulation in avian species. Semin Avian ExotPet Med 2002; 11: 57–64.

● 21. Bayrakdar A, Yaman M, Atalar O, Gencer Tarakci B, Ceribasi S. Distribution of neuropeptides in endocrine and exocrine pancreas oflong-legged buzzard (Buteo rufinus): an immunohistochemical study. Regul Pept 2011; 166: 121–7.

● 22. Tomita T, Doull V, Pollock HG, Kimmell JR. Regional distribution of pancreatic polypeptide and other hormones in chicken pancreas: reciprocal relationship between pancreatic polypeptide and glucagon. GenComp Endocrinol 1985; 58: 303–10.

● 23. Hazelwood RL. Pancreas. In: Whittow, GC, editor. Sturkie’s AvianPhysiology. 5th Edition. Cambridge, Massachusetts: Elsevier, 2000: 539–55.

● 24. Brereton MF, Vergari E, Zhang Q, Clark A. Alpha-, delta-and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J Histochem Cytochem 2015; 63: 575–91.

● 25. Wang X, Zielinski MC, Misawa R, et al. Quantitative analysis of pancreatic polypeptide cell distribution in the human pancreas. PLoS One 2013; 8: e55501. doi: 10.1371/journal.pone.0055501

● 26. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 2000; 141: 111–7.

● 27. Pilny AA. The avian pancreas in health and disease. Vet Clin North AmExot Anim Pract 2008; 11: 25-34.

● 28. Svendsen B, Holst JJ. Paracrine regulation of somatostatin secretionby insulin and glucagon in mouse pancreatic islets. Diabetologia 2021; 64: 142–51.

● 29. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, CaicedoA. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 2006; 103: 2334–9.

● 30. Aamodt KI, Powers AC. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab 2017; 19: Suppl 1: 124–36.

● 31. Gribben C, Lambert C, Messal HA, et al. Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas. Cell Stem Cell 2021; 28: e2000–8. doi: 10.1016/j.stem.2021.08.003

● 32. Levine F. Approaches to inducing β-cell regeneration. Biomedicines2022; 10: e571. doi: 10.3390/biomedicines100305

Downloads

Published

2023-07-11

How to Cite

Abdellatif, A. (2023). EXPRESSION OF INSULIN, GLUCAGON, SOMATOSTATIN, AND PANCREATIC POLYPEPTIDE IN THE PANCREAS OF THE EURASIAN MOORHEN (Gallinula chloropus). Slovenian Veterinary Research, 60(4), 185–93. https://doi.org/10.26873/SVR-1616-2023

Issue

Section

Original Research Article