ANTI-FIBROTIC AND ANTIOXIDANT AMELIORATIVE EFFECTS OF NARINGENIN AGAINST THIOACETAMIDE INDUCED LIVER FIBROSIS
DOI:
https://doi.org/10.26873/SVR-1598-2022Keywords:
Naringenin, Thioacetamide, liver fibrosis, fibrogenic markersAbstract
Liver fibrosis still life-threatening problem and searching out ameliorative products motives many scientists, so this work evaluated the anti-fibrotic and antioxidant role of naringenin (NAR) against thioacetamide (TAA) induced liver fibrosis. Fifty adult male albino rats randomly divided into 5 groups (10 each); the first kept as control; the second treated I/P by 200 mg/kg TAA twice a week for 8 weeks; the third was gavaged daily with 50 mg /kg/ b.wt of NAR for 8 weeks; the fourth was co-treated by TAA and NAR while the fifth was treated with TAA for 8 w then gavaged daily by NAR for 1 month. TAA administration significantly increases the hepatic cell enzymes (ALT, AST, ALP and GGT) in the serum referring to hepatic cell destruction with an increase in hepatic MDA with a reduction in GSH concentrations, antioxidant enzyme activities as well as down regulation of their expression levels. NAR administration either with or after TAA ameliorates this effect suggesting its antioxidant ability. In the fibrotic pathway, TAA treatment up-regulates the expression levels of fibrogenic biomarkers (TGF-β, collagen 1α and fibronectin) genes while NAR down-regulates these genes suggesting its anti-fibrotic ability. Histopathological analysis confirms the biochemical results. In conclusion, NAR ameliorates the deleterious effect of TAA through its antioxidant and anti-fibrotic abilities.
References
● 1. Dutta, S.; Mishra, S. P.; Sahu, A. K.; Mishra, K.; Kashyap, P.; Sahu, B.; Hepatocytes and Their Role in Metabolism. Drug Metabolism. 2021. DOI: 10.5772/intechopen.99083
● 2. Fu, K.; Wang, C.; Ma, C.; Zhou, H.; Li, Y.; The Poten-tial Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol. 2021 4; 12:771459. doi: 10.3389/fphar.2021.771459.
● 3. Sharma, A.; Nagalli, S.; Chronic Liver Disease. Treasure Island (FL): StatPearls; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554597/
● 4. Akdemir, B.; Bahcecioglu, I. H.; Tuzcu, M.; Orhan, C.; Ispiroglu, M.; Ozercan, I. H.; Ilhan, N.; Celik, N. C.; Sahin, K.;. Effect of Lycopene and Genistein on Hepat-ic Inflammation and Fibrosis in Thioacetamide Induced Liver Injury in Rats. British Journal of Medicine & Med-ical Research, 2016, 18(6): 1–11. DOI: 10.9734/BJMMR/2016/27654
● 5. Moustafa, G. G.; Hussein. M. A.; New insight on using aged garlic extract against toxic impacts of titani-um dioxide bulk salt triggers inflammatory and fibrotic cascades in male rats. Biomed Pharmacother. 2016 Dec;84:687–97. doi: 10.1016/j.biopha.2016.09.092.
● 6. Mormone, E.; George, J.; Nieto, N.: Molecular patho-genesis of hepatic fibrosis and current therapeutic ap-proaches. Chemico-Biological Interactions, 2011 Sep 30;193(3):225-31. doi: 10.1016/j.cbi.2011.07.001.
● 7. Al-Attar, A. M.; Al-Rethea, H. A.; Chemoprotective effect of omega-3 fatty acids on thioacetamide induced hepatic fibrosis in male rats. Saudi J Biol Sci. 2017 May; 24(4): 956–65. doi: 10.1016/j.sjbs.2016.01.029
● 8. Moustafa AH, Ali EM, Moselhey SS, Tousson E, El-Said KS. Effect of coriander on thioacetamide-induced hepatotoxicity in rats. Toxicol Ind Health. 2014 Aug;30(7):621-9. doi: 10.1177/0748233712462470.
● 9. Yu, L.B.; Li, W.; Hai-ting, P.; Tai-ran, Z.; Ya-hong, C.; Shan-jing, X.; Xin-li, M.;Shao-wei, L.; Animal and Or-ganoid Models of Liver Fibrosis. Front. Physiol., 26 May 2021Sec. Integrative Physiology. https://doi.org/10.3389/fphys.2021.666138
● 10. Liedtke, C.; Luedde, T.; Sauerbruch, T.; Scholten, D.; Streetz, K.; Tacke, F.; Tolba, R.; Trautwein, C.; Trebicka, J.; Weiskirchen, R.; Experimental liver fibrosis research: Update on animal models, legal issues and translational aspects.Fibrogenesis Tissue Repair, 2013 Oct 1;6(1):19. doi: 10.1186/1755-1536-6-19.
● 11. Ipsen D. H.; Lykkesfeldt J.; Tveden-Nyborg P.; Mo-lecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018, 75(18): 3313–3327. doi: 10.1007/s00018-018-2860-6
● 12. Ali, H.A.; Almaghrabi, O.A.; Afifi, M.E.; Molecular mechanisms of anti-hyperglycemic effects of Costus speciosus extract in streptozotocin-induced diabetic rats. Saudi Med J. 2014 Dec;35(12):1501-6. PMID: 25491216.
● 13. Casas-Grajales, S.; Muriel, P.; Antioxidants in liver health. World J Gastrointest Pharmacol Ther; 2015, 6(3): 59–72 DOI:http://dx.doi.org/10.4292/wjgpt.v6.i3.59.
● 14. Ayoka, T.O.; Ezema, B.O.; Eze, C.N.;Nnadi, C.O.; Antioxidants for the Prevention and Treatment of Noncommunicable Diseases. Journal of Exploratory Research in Pharmacology 2022 vol. 7(3) | 178–88. DOI: 10.14218/JERP.2022.00028
● 15. Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Ro-cha, C.; Teixeira, J. A.; Valorization of Natural Antioxi-dants for Nutritional and Health Applications. In (Ed.), Antioxidants - Benefits, Sources, Mechanisms of Ac-tion. IntechOpen.2021. https://doi.org/10.5772/intechopen.96111.
● 16. Hussein, M. A.; Haytham A. A.; Mona M. A.; Ame-liorative effects of phycocyanin against gibberellic acid induced hepatotoxicity Pestic Biochem Physiol. 2015 Mar;119:28-32. doi: 10.1016/j.pestbp.2015.02.010.
● 17. Yen, F.L.; Wu, T.H.; Lin, L.T.; Cham, T.M.; Lin, C.C.; Naringenin-loaded nanoparticles improve the physico-chemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl(4)-induced acute liver failure. Pharm Res. 2009 Apr;26(4):893–902. doi: 10.1007/s11095-008-9791-0.
● 18. Pinho-Ribeiro, F.A.; Zarpelon, A.C.; Mizokami, S.S.; Borghi, S.M,; Bordignon, J,; Silva, R.L.; Cunha, T.M.; Alves-Filho, J.C.; Cunha, F.Q.; Casagrande, R.; Verri, W.A.; The citrus flavonone naringenin reduces lipopol-ysaccharide-induced inflammatory pain and leukocyte re-cruitment by inhibiting NF-κB activation. J Nutr Bio-chem; 2016, 33: 8–14. DOI: 10.1016/j.jnutbio.2016.03.013.
● 19. Ozkaya, A.; Sahin, Z.; Dag, U.; Ozkaraca, M.; Effects of Naringenin on Oxidative Stress and Histopathologi-cal Changes in the Liver of Lead Acetate Administered Rats. J Biochem Mol Toxicol 2016; 30: 243–8. DOI: 10.1002/jbt.21785
● 20. Arul, D.; Subramanian, P.; Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun 2013; 434: 203–9. DOI: 10.1016/j.bbrc.2013.03.039
● 21. Mershiba SD, Dassprakash MV, Saraswathy SD. Protective effect of naringenin on hepatic and renal dys-function and oxidative stress in arsenic intoxicated rats. Mol Biol Rep. 2013 May;40(5):3681-91. doi: 10.1007/s11033-012-2444-8.
● 22. Lee MH, Yoon S, Moon JO. The flavonoid naringen-in inhibits dimethylnitrosamine-induced liver damage in rats. Biol Pharm Bull. 2004 Jan;27(1):72-6. doi: 10.1248/bpb.27.72.
● 23. Du, G.; Jin, L.; Han, X.; Song, Z.; Zhang, H.; Liang, W.; Naringenin: a potential immunomodulator for in-hibiting lung fibrosis and metastasis. Cancer Res; 2009, 69: 3205-3212. DOI: 10.1158/0008-5472.CAN-08-3393.
● 24. Bruck R, Genina O, Aeed H, Alexiev R, Nagler A, Avni Y, Pines M. Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology. 2001 Feb;33(2):379–86. doi: 10.1053/jhep.2001.21408.
● 25. Breuer, J.; Report on symposium “Drug effects in Clinical Chemistry Methods”, Eur. J. Clin. Chem. Clin. Biochem. 1996, 34: 385–6.
● 26. Moss, D.W.; Henderson, A.R.; Kachmar, J.F.; En-zymes, in: N.W. Tietz (Ed.), Fundamentals of Clinical Chemistry, third ed., WB Saunders, Philadelphia, 1987, pp. 346–421.
● 27. Buege, J.A.; Aust, S.D.; Microsomal lipid peroxida-tion. Methods Enzymol. 1978, 52: 302-310.
● 28. Ellman, G.L.; Tissue sulfhydryl groups. Arch. Bio-chem. Biophys., 1959, 17: 214–26.
● 29. Livak, K.J.; Schmittgen, T.D.; Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method. Methods; 2001, 25 (4):402–8.
● 30. Bancroft, J.D.; Gamble, M.; Theory and Practice of Histological Techniques. 5th ed., Churchill Livingstone. New York, London, Philadelphia, 2008.
● 31. Renner, D.A.; “Molecular pathogenesis of liver fibro-sis,” Transactions of the American Clinical and Climato-logical Association, 2009,vol. 120, pp. 361–8. https://doi.org/10.1155/2019/7028314
● 32. Kornek M, Raskopf E, Guetgemann I, Ocker M, Gerceker S, Gonzalez-Carmona MA, Rabe C, Sauer-bruch T, Schmitz V. Combination of systemic thio-acetamide (TAA) injections and ethanol feeding acceler-ates hepatic fibrosis in C3H/He mice and is associated with intrahepatic up regulation of MMP-2, VEGF and ICAM-1. J Hepatol. 2006 Sep;45(3):370-6. doi: 10.1016/j.jhep.2006.03.017.
● 33. Zhang A, Sun H, Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem. 2013 May;63:570-7. doi: 10.1016/j.ejmech.2012.12.062.
● 34. Atta, E.M.; Mohamed, N.H.; Abdelgawad, A.A.M.; Antioxidants: An Overview On The Natural And Syn-thetic Types. European chemical bulletin. 2017, Vol (6) 8. DOI:%20http://dx.doi.org/10.17628/ecb.2017.6.365-375.
● 35. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014 Mar;14(3):181–94. doi: 10.1038/nri3623.
● 36. Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF, Brenner DA. Bone marrow-derived fibrocytes participate in patho-genesis of liver fibrosis. J Hepatol. 2006 Sep;45(3):429-38. doi: 10.1016/j.jhep.2006.04.014.
● 37. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002 Apr 1;7:d793–807. doi: 10.2741/A812.
● 38. Mi XJ, Hou JG, Jiang S, Liu Z, Tang S, Liu XX, Wang YP, Chen C, Wang Z, Li W. Maltol Mitigates Thio-acetamide-induced Liver Fibrosis through TGF-β1-mediated Activation of PI3K/Akt Signaling Pathway. J Agric Food Chem. 2019 Feb 6;67(5):1392–401. doi: 10.1021/acs.jafc.8b05943.
● 39. Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol. 2018 Apr 28;24(16):1679–1707. doi: 10.3748/wjg.v24.i16.1679.
● 40. Zhao L, Zhang N, Yang D, Yang M, Guo X, He J, Wu W, Ji B, Cheng Q, Zhou F. Protective Effects of Five Structurally Diverse Flavonoid Subgroups against Chronic Alcohol-Induced Hepatic Damage in a Mouse Model. Nutrients. 2018 Nov 14;10(11):1754. doi: 10.3390/nu10111754.
● 41. Peterson R.C.; Free-radicals and advanced chemistries involved in cell membrane organization influence oxy-gen diffusion and pathology treatment. AIMS Biophys. 2017, 4(2): 240–83. doi: 10.3934/biophy.2017.2.240.
● 42. Prchal JT, Gregg XT. Red cell enzymes. Hematology Am Soc Hematol Educ Program. 2005:19-23. doi: 10.1182/asheducation-2005.1.19.
● 43. Brigelius-Flohé R, Maiorino M. Glutathione peroxi-dases. Biochim Biophys Acta. 2013 May;1830(5):3289–303. doi: 10.1016/j.bbagen.2012.11.020.
● 44. Liu, X.,Wang, W., Hu, H., Tang, N., Zhang, C., Liang, W., and Wang M.; Smad3 Specific Inhibitor, Naringenin, Decreases the Expression of Extracellular Matrix Induced by TGF-"1 in Cultured Rat Hepatic Stel-late Cells. Pharmaceutical Research, 2006, 23 (1). DOI: 10.1007/s11095-005-9043-5.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Haytham A. Ali, Mohamed Afifi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.