PRECLINICAL MOUSE MODELS IN ADOPTIVE CELL THERAPIES OF CANCER
DOI:
https://doi.org/10.26873/SVR-1513-2022Keywords:
mouse model, xenograft, syngeneic, transgenic, humanized, CAR-T, adoptive cell therapyAbstract
Engineered T cell-based therapies are an advanced approach for cancer immunotherapy using genetically modi- fied T cells. To date, CD19 and BCMA targeting Chimeric Antigen Receptor (CAR) T cells have been approved for the treatment of certain hematologic malignancies. The success of CAR-T cells is offset by limited efficacy, particularly in solid tumors, and safety risks. Preclinical in vivo research, which is highly dependent on reliable mouse models, has been a cornerstone of the suc- cess story of adoptive cell therapies and continues to provide invaluable information for the development of the next generation of cellular immunotherapies. In this review we describe four of the most common preclinical mouse models: xenograft models, syngeneic models, immunocompetent transgenic models and humanized mouse models. All of these have advantages and disadvantages and no mouse model can fully recapitulate the human situation because of inherent differences and treatment complexity. Reports suggest that using a combination of mouse models in preclinical in vivo research prior to translating the treat- ment to humans in clinical trials can help incrementally improve the quality, safety, and efficacy of the treatment and provide more comprehensive information than a single model.
PREDKLINIČNI MIŠJI MODELI PRI ADOPTIVNIH CELIČNIH TERAPIJAH RAKA
Izvleček: Napredne terapije na osnovi biotehnološko spremenjenih limfocitov T predstavljajo moderen pristop k imunoter- apiji raka z uporabo genetsko spremenjenih limfocitov T. Do danes sta bili za zdravljenje hematoloških malignosti odobreni terapiji s himernimi antigenskimi receptorji usmerjenimi proti antigenoma CD19 in BCMA. Uspeh zdravljenja s celicami CAR-T pa ovirajo omejena učinkovitost, še posebej pri solidnih tumorjih in varnostna tveganja. Predklinične raziskave in vivo, ki so močno odvisne od zanesljivih mišjih modelov, so bile kritični dejavnik zgodbe o uspehu adoptivnih celičnih terapij in še vedno zagotavljajo neprecenljive podatke za razvoj naslednje generacije celičnih imunoterapij. V preglednem članku povzemamo štiri najpogostejše predklinične mišje modele: ksenografte, singenetske modele, imunokompetentne transgenske modele in humanizirane mišje modele. Vsi opisani modeli imajo svoje prednosti in slabosti in noben mišji model ne more do popol- nosti preslikati situacije v človeškem pacientu zaradi medvrstnih razlik ter izjemne zapletenosti zdravljenja. Podatki iz literature kažejo na to, da lahko uporaba kombinacije mišjih modelov v predkliničnih in vivo raziskavah pred translacijo zdravljenja na ljudi v kliničnih poskusih pripomore k postopnemu izboljšanju kakovosti, varnosti in učinkovitosti zdravljenja in zagotovi bolj celostni nabor podatkov kot en sam model.
Ključne besede: mišji model; ksenograft; singenetski; transgenski; humanizirani; CAR-T; adoptivna celična terapija
References
● 1. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med 2018; 379: 64–73.
● 2. Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21: 215–23.
● 3. Kuwana Y, Asakura Y, Utsunomiya N, et al. Ex-pression of chimeric receptor composed of immunoglobu-lin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987; 149: 960–8.
● 4. Eshhar Z, Waks T, Gross G, Schindler DG. Spe-cific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 1993; 90: 720–4.
● 5. Brocker T, Karjalainen K. Signals through T cell re-ceptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 1995; 181: 1653–9.
● 6. Grupp SA, Kalos M, Barrett D, Aplenc R et al. Chimeric antigen receptor-modified T cells for acute lym-phoid leukemia. N Engl J Med 2013; 368: 1509–18.
● 7. Maude SL, Laetsch TW, Buechner J, et al. Tisagen-lecleucel in children and young adults with B-cell lympho-blastic leukemia. N Engl J Med 2018; 378: 439–48.
● 8. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385: 517–28.
● 9. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017; 377: 2545–54.
● 10. Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior anti-tumor reactivity in vivo. Leukemia 2016; 30: 492–500.
● 11. Mullard A. FDA approves first BCMA-targeted CAR-T cell therapy. Nat Rev Drug Discov. 2021; 332: 20–5.
● 12. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and man-agement. Blood Rev 2019; 34: 45–55.
● 13. Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and manage-ment of toxicities. Nat Rev Clin Oncol 2018; 15: 47–62.
● 14. Fraietta JA, Lacey SF, Orlando EJ, et al. Determi-nants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leu-kemia. Nat Med 2018; 24: 563–71.
● 15. Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res 2017; 27: 38–58.
● 16. Siegler EL, Wang P. Preclinical models in chimeric antigen receptor–engineered T-cell therapy. Human Gene Ther 2017; 29: 534–46.
● 17. Kaushik G, Venkatesha S, Verma B, et al. Preclini-cal in vitro and in vivo models for adoptive cell therapy of cancer. Cancer J 2022; 28: 257–62.
● 18. Magee MS, Snook AE. Challenges to chimeric an-tigen receptor (CAR)-T cell therapy for cancer. Discov Med 2014; 18: 265–71.
● 19. Rajcevic U. A rodent brain orthotopic model to study human malignant glioma. Slov Vet Res 2011; 48: 5–14.
● 20. Flanagan SP. 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966; 8: 295–309.
● 21. Goldman JP, Blundell MP, Lopes L, et al. En-hanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 1998; 103: 335–42.
● 22. Tyagi RK, Jacobse J, Li J, Allaman MM, et al. HLA-restriction of human treg cells is not required for therapeutic efficacy of low-dose IL-2 in humanized Mice. Front Immunol 2021; 24: e630204. doi: 10.3389/fimmu.2021.630204
● 23. Rodriguez-Garcia A, Watanabe K, Guedan S. Analysis of antitumor effects of CAR-T cells in mice with solid tumors. Methods Mol Biol 2020; 2086: 251–71.
● 24. Walsh NC, Kenney LL, Jangalwe S, et al. Human-ized mouse models of clinical disease. Annu Rev Pathol 2017; 24: 187–215.
● 25. Shultz LD, Lyons BL, Burzenski LM, Shultz LD. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–89.
● 26. Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002 100: 3175–82.
● 27. Covassin L, Jangalwe S, Jouvet N, et al. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rγnull (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol 2013; 174: 372–88.
● 28. Arranz L. The hematology of tomorrow is here-preclinical models are not: cell therapy for hematological malignancies. Cancers (Basel) 2022; 14(3): e580. doi: 10.3390/cancers14030580.
● 29. Ramos CA, Rouce R, Robertson CS, et al. In vivo fate and activity of second- versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin's lymphomas. Mol Ther 2018; 26: 2727–37.
● 30. Maher J, Brentjens RJ, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 2002; 20: 70–5.
● 31. Kakarla S, Chow KKH, Mata M., et al. Antitumor effects of chimeric receptor engineered human T cells di-rected to tumor stroma. Mol Ther 2013; 21: 1611–20.
● 32. Long AH, Haso WM, Shern JF, et al. 4-1BB cost-imulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21: 581–90.
● 33. Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retar-geted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 2009; 106: 3360–5.
● 34. Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 2015; 350(6258): aab4077. doi: 10.1126/science.aab4077
● 35. Roybal KT, Rupp LJ, Morsut L, et al. Engineering T cells with customized therapeutic article engineering T cells with customized therapeutic esponse programs using synthetic notch receptors. Cell 2016; 167: 419–32.
● 36. Minutolo NG, Sharma P, Poussin M, et al. Quan-titative control of gene-engineered T-cell activity through the covalent attachment of targeting ligands to a universal immune receptor. J Am Chem Soc 2020; 142: 6554–68.
● 37. Lynn RC, Weber EW, Sotillo E, et al. c-Jun over-expression in CAR T cells induces exhaustion resistance. Nature 2019; 576: 293–300.
● 38. Eyquem J, Mansilla-Soto J, Giavridis T, et al. Tar-geting a CAR to the TRAC locus with CRISPR/Cas9 en-hances tumour rejection. Nature 2017; 543: 113–7.
● 39. Roth TL, Li PJ, Blaeschke F, et al. Pooled knockin targeting for genome engineering of cellular immunothera-pies. Cell 2020; 181: 728–44.
● 40. Roth TL, Puig-Saus C, Yu R, et al. Reprogram-ming human T cell function and specificity with non-viral genome targeting. Nature 2018; 559: 405–9.
● 41. Tasian SK, Teachey DT, Li Y, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 2017; 129: 177–87.
● 42. Lee JC, Hayman E, Pegram HJ, et al. In vivo inhibi-tion of human CD19-targeted effector T cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Res 2011; 71: 2871–81.
● 43. Sanmamed MF, Chester C, Melero I, Kohrt H. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol 2016; 27: 1190–8.
● 44. Holzapfel BM, Wagner F, Thibaudeau L, et al. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem Cells 2015; 33: 1696–704.
● 45. Kochenderfer JN, Yu Z, Frasheri D, et al. Adop-tive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010; 116: 3875–86.
● 46. Davila ML, Brentjens R. Chimeric antigen receptor therapy for chronic lymphocytic leukemia: what are the challenges? Hematol Oncol Clin North Am 2013; 27: 341–53.
● 47. Cheadle EJ, Hawkins RE, Batha H, et al. Natural expression of the CD19 antigen impacts the long-term engraftment but not antitumor activity of CD19-specific engineered T cells. J Immunol 2010; 184: 1885–96.
● 48. Cheadle EJ, Sheard V, Rothwell DG, et al. Differ-ential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific second-generation chimeric antigen recep-tor T cells in a mouse model. J Immunol 2014; 192: 3654–65.
● 49. Burga RA, Thorn M, Point GR, et al. Liver mye-loid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 2015; 64: 817–29.
● 50. VanSeggelen H, Hammill JA, Dvorkin-Gheva A, et al. T cells engineered with chimeric antigen receptors targeting NKG2D ligands display lethal toxicity in mice. Mol Ther 2015; 23: 1600–10.
● 51. Chinnasamy D, Tran E, Yu Z, et al. Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res 2013; 73: 3371–80.
● 52. Pegram HJ, Lee JC, Hayman EG, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012; 119: 4133–41.
● 53. Kunert A, Chmielewski M, Wijers R, et al. Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology 2017; 7(1): e1378842. doi: 10.1080/2162402X.2017.1378842.
● 54. Chmielewski M, Abken H. CAR T cells releasing IL-18 convert to T-Bet high FoxO1 low effectors that ex-hibit augmented activity against advanced solid tumors. Cell Rep 2017; 21: 3205–19.
● 55. Hu B, Ren J, Luo Y, et al. Augmentation of anti-tumor immunity by human and mouse CAR T cells secret-ing IL-18. Cell Rep 2017; 20: 3025–33.
● 56. Zimmermann K, Kuehle J, Dragon AC, et al. De-sign and characterization of an all-in-one lentiviral vector system combining constitutive anti-G D2 CAR expression and inducible cytokines. Cancers (Basel) 2020; 12(2): e375. doi: 10.3390/cancers12020375
● 57. Adachi K, Kano Y, Nagai T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Bio-technol 2018; 36: 346–51.
● 58. Rafiq S, Yeku OO, Jackson HJ, et al. Targeted de-livery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 2018; 36: 847–56.
● 59. Kuhn NF, Purdon TJ, van Leeuwen DG, et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 2019; 35: 473–88.
● 60. Rodriguez-Garcia A, Lynn RC, Poussin M, et al. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunothera-py. Nat Commun 2021; 12(1): e877. doi: 10.1038/s41467-021-20893-2
● 61. Hogan B. Manipulating mouse embryos. Cold Spring Harbor : Cold Spring Harbor Laboratory Press, 1994.
● 62. Eades-Perner AM, van der Putten H, Hirth A, et al. Mice transgenic for the human carcinoembryonic antigen gene maintain its spatiotemporal expression pattern. Cancer Res 1994; 54: 4169–76.
● 63. Peat N, Gendler SJ, Lalani N, et al. Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res 1992; 52: 1954–60.
● 64. Beavis PA, Henderson MA, Giuffrida L, et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest 2017; 127: 929–41.
● 65. Chmielewski M, Hahn O, Rappl G, et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology 2012; 143: 1095–107.
● 66. Wang LX, Westwood JA, Moeller M, et al. Tumor ablation by gene-modified T cells in the absence of auto-immunity. Cancer Res 2010; 70: 9591–8.
● 67. Wang LX, Kang G, Kumar P, et al. Humanized-BLT mouse model of Kaposi's sarcoma-associated herpes-virus infection. Proc Natl Acad Sci U S A 2014; 111: 3146–51.
● 68. Bhattacharya-Chatterjee M, Saha A, Foon KA, Chatterjee SK. Carcinoembryonic antigen transgenic mouse models for immunotherapy and development of cancer vaccines. Curr Protoc Immunol 2008; 80: 20.8.1–12.
● 69. Brentjens RJ, Rivière I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118: 4817–28.
● 70. Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19: 620–6.
● 71. Eades-Perner AM, Zimmermann W. Carcinoem-bryonic antigen-transgenic mice: a model for tumor immu-notherapy. Tumour Biol 1995; 16: 56–61.
● 72. Chan CHF, Stanners CP. Novel mouse model for carcinoembryonic antigen-based therapy. Mol Ther 2004; 9: 775–85.
● 73. Blat D, Zigmond E, Alteber Z, et al. Suppression of murine colitis and its associated cancer by carcinoembry-onic antigen-specific regulatory T cells. Mol Ther 2014; 5: 1018–28.
● 74. Aranda F, Barajas M, Huarte E. Transgenic tumor models for evaluating CAR T-cell immunotherapies. Curr Protoc Pharmacol 2019; 86(1): e66. doi: 10.1002/cpph.66.
● 75. Brehm MA, Shultz LD, Greiner DL. Humanized mouse models to study human diseases. Curr Opin Endo-crinol Diabetes Obes 2010; 17: 120–5.
● 76. Takenaka K, Prasolava TK, Wang JC, et al. Poly-morphism in Sirpa modulates engraftment of human hema-topoietic stem cells. Nat Immunol 2007; 8: 1313–23.
● 77. Smith DJ, Lin LJ, Moon H, et al. Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cells Dev 2016; 25: 1863–73.
● 78. Traggiai E, Chicha L, Mazzucchelli L, et al. Devel-opment of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–7.
● 79. Chicha L, Tussiwand R, Traggiai E, et al. Human adaptive immune system Rag2-/-gamma(c)-/- mice. Ann N Y Acad Sci 2005; 1044: 236–43.
● 80. Melkus MW, Estes JD, Padgett-Thomas A, et al. Humanized mice mount specific adaptive and innate im-mune responses to EBV and TSST-1. Nat Med 2006; 12: 1316–322.
● 81. Lan P, Tonomura N, Shimizu A, et al. Reconstitu-tion of a functional human immune system in immunodefi-cient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006; 108: 487–92.
● 82. Wege AK, Melkus MW, Denton PW, et al. Func-tional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol 2008; 324: 149–65.
● 83. Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018; 24: 739–48.
● 84. Arcangeli S, Bove C, Mezzanotte C, et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J Clin Invest 2022; 132(12): e15080. doi: 10.1172/JCI150807
● 85. Page A, Laurent E, Nègre D, et al. Efficient adop-tive transfer of autologous modified B cells: a new human-ized platform mouse model for testing B cells reprogram-ming therapies. Cancer Immunol Immunother 2022; 71: 1771–5.
● 86. Lanitis E, Rota G, Kosti P, et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J Exp Med 2021; 218(2): e20192203. doi: 10.1084/jem.20192203
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 SLOVENIAN VETERINARY RESEARCH

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.