EVALUATION OF DIFFERENT CHEMICAL COMPOSITIONS IN EGGS OF THE HERMANN’S TORTOISE (Testudo hermanni)

Authors

  • Mateja Stvarnik University of Ljubljana Veterinary Faculty Unit for Administrative Legal Affairs Gerbičeva 60 1000 Ljubljana Slovenia
  • Zlatka Bajc University of Ljubljana Veterinary Faculty Institute of Food Hygiene and Bromatology Gerbičeva 60 1000 Ljubljana Slovenia
  • Kenija Šinigoj Gačnik University of Ljubljana Veterinary Faculty Institute of Food Hygiene and Bromatology Gerbičeva 60 1000 Ljubljana Slovenia
  • Alenka Dovč University of Ljubljana Veterinary Faculty Institute for Health Care of Poultry Cesta v Mestni log 47 1000 Ljubljana Slovenia

Abstract

In this study, Hermann’s tortoise (Testudo hermanni boettgeri) eggs were studied. The aim was to evaluate the basic composition, amino and fatty acid profiles, as well as the presence of certain trace elements in the eggs. The average size of THB eggs was 29.9 × 39.5 mm and weight 20.7 g. The shell accounted for 12.5%, albumen 46.9% and yolk 40.6% of the entire THB egg. The refractive index was 1.3341 in the albumen and 1.5120 in the yolk. Albumen contained 98.2% water, 0.9% proteins, 0.7% ash and traces of fat. Yolk contained 60.6% water, 21.0% protein, 14.2% fat and 4.0 % ash. The pH of albumen was 8.8.
The fatty acid composition was measured in egg yolk; oleic acid, palmitic acid, palmitoleic acid and vaccenic acid were the most abundant. The amino acid composition was measured in egg albumen, and 18 amino acids were detected. The major amino acids present in albumen were glutamic acid, aspartic acid, leucine, phenylalanine, lysine, glycine, serine, threonine and alanine.
Concentrations of the trace elements, in descending order were in the shell: iron (Fe), nickel (Ni), copper (Cu), manganese (Mn), cobalt (Co), zinc (Zn), chromium (Cr), arsenic (As) and selenium (Se); in the albumen: Fe, Cu, Cr, Se; and in the yolk: Fe, Zn, Cu, Mn, Se, Cr, Ni, Pb, Co.

Key words: Testudo hermanni; eggs; chemical composition; fatty acids; amino acids; trace elements

 

DOLOČANJE RAZLIČNIH KEMIČNIH SESTAVIN V JAJCIH GRŠKE KORNJAČE (Testudo hermanni)

Namen raziskave je bil proučiti sestavo jajc grške kornjače (Testudo hermanni boettgeri), vsebnost aminokislin in maščobnih kisli, kot tudi vsebnost nekaterih elementov v sledovih. Povprečna velikost jajc THB je bila 29,9 × 39,5 mm, masa pa 20,7 g. Celotno jajce je bilo sestavljeno iz 12,5 % lupine, 46,9 % beljaka in 40,6 % rumenjaka. Indeks refrakcije beljaka je znašal 1,3341 in rumenjaka 1,5120. Beljak je vseboval 98,2 % vode, 0,9 % beljakovin, 0,7 % pepela in sledove maščobe. Rumenjak je vseboval 60,6 % vode, 21,0 % beljakovin, 14,2 % maščob in 4,0 % pepela. Vrednost pH beljaka je bila 8,8.
Najvišji delež maščobnih kislin v rumenjaku so predstavljale oleinska kislina, palmitinska kislina, palmitooleinska kislina in vakcenska kislina. V beljaku smo potrdili 18 različnih aminokislin. Najvišji delež le-teh so predstavljale glutaminska kislina, asparginska kislina, levcin, fenilalanin, lizin, glicin, serin, treonin in alanin.
Koncentracije elementov v sledovih v lupini so bile v naslednjem padajočem zaporedju: železo (Fe), nikelj (Ni), baker (Cu), mangan (Mn), kobalt (Co), cink (Zn), krom (Cr), arzen (As), selen (Se); v beljaku: Fe, Cu, Cr, Se, v rumenjaku pa: Fe, Zn, Cu, Mn, Se, Cr, Ni, Pb, Co.

Ključne besede: Testudo hermanni; jajca; kemična sestava; maščobne kisline; aminokisline; elementi v sledovih

Author Biographies

Mateja Stvarnik, University of Ljubljana Veterinary Faculty Unit for Administrative Legal Affairs Gerbičeva 60 1000 Ljubljana Slovenia

Unit for Administrative Legal Affairs

Zlatka Bajc, University of Ljubljana Veterinary Faculty Institute of Food Hygiene and Bromatology Gerbičeva 60 1000 Ljubljana Slovenia

Institute of Food Hygiene and Bromatology

Kenija Šinigoj Gačnik, University of Ljubljana Veterinary Faculty Institute of Food Hygiene and Bromatology Gerbičeva 60 1000 Ljubljana Slovenia

Institute of Food Hygiene and Bromatology

Alenka Dovč, University of Ljubljana Veterinary Faculty Institute for Health Care of Poultry Cesta v Mestni log 47 1000 Ljubljana Slovenia

Institute for Health Care of Poultry

References

(1) Bertolero A, Cheylan M, Hailey A, Livoreil B, Willemsen RE. (2011). Testudo hermanni (Gmelin 1789) – Hermann’s tortoise. In: Rhodin AGJ, Pritchard PCH, van Dijk PP, eds. Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. [Online] Arlington : Chelonian Research Foundation, 2011: e059.1–059.20 (Chelonian research monographs, No. 5) http://www.iucn-tftsg.org/wp-content/uploads/file/Accounts/crm_5_059_hermanni_v1_2011.pdf

(2) Fritz U, Auer M, Bertolero A, et al. A rangewide phylogeography of Hermann's tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zool Scripta 2006; 35: 531–43.

(3) Köhler G. Incubation of reptile eggs: basics, guidelines, experiences. Malabar : Krieger Publishing, 2006: 9–13.

(4) Belitz HD, Grosch W, Schieberle P. Food chemistry. 2nd ed. Berlin : Springer, 2009: 546–62.

(5) Miller JD, Dinkelacker SA. Reproductive structures and strategies of turtles. In: Wyneken J, Godfrey MH, Bels V, eds. Biology of turtles: from structures to strategies of life. Boca Raton : CRC Press, 2008: 225–78.

(6) Booth DT, Thompson MB. A comparison of reptilian eggs with those of megapode birds. In: Deening D, Ferguson MWJ, eds. Egg incubation: its effects on embryonic development in birds and reptiles. 5th ed. Cambridge : University Press, 1991: 325–44.

(7) Highfield AC. Practical encyclopedia of keeping and breeding tortoises and freshwater turtles. London : Carapace Press, 1996: 141–257.

(8) Zeidler G. Shell eggs and their nutritional value. In: Bell DD, Weaver WD, eds. Commercial chicken meat and egg production. 5th ed. Norwell, Massachusetts : Kluwer Academic Publishers, 2002: 1109–28.

(9) Prajanban BO, Shawsuan L, Daduang S, et al. Identification of five reptile egg whites protein using MALDI-TOF mass spectrometry and LC/MS-MS analysis. J Proteomics 2012; 75: 1940–59.

(10) Hosen SMZ, Swati P, Dibyajyoti S. Artificial and fake eggs: dance of death. Adv Pharmacol Pharm 2013; 1: 13–7.

(11) Okubo T, Akachi S, Hatta H. (1997). Structure of hen eggs and physiology of egg laying. In: Takehiko Y, Lekh RJ, Hajime H, Mujo K, eds. Hen eggs: basic and applied science. Boca Raton : CRC Press, 1997: 1–12.

(12) Bellairs R, Osmond M. The atlas of chick development. 3rd ed. Oxford : Academic Press, 2014: 1–6.

(13) Speake BK, Surai PF, Gore M. Lipid composition, fatty acid profiles, and lipid-soluble antioxidants of eggs of the Hermann's tortoise (Testudo hermanni boettgeri). Zoo Biol 2001; 20: 75–87.

(14) Tunsaringkarn T, Siriwong W, Tungjaroenchai W. Chemical compositions of eggs from chicken, quail and snail-eating turtle. Thai J Agric Sci 2011; 44: 478–86.

(15) Wallace BP, Sotherland PR, Tomillo PS, et al. Egg components, egg size, and hatchling size in leatherback turtles. Comp Biochem Physiol A Mol Integr Physiol 2006; 145: 524–32.

(16) Hailey A, Loumbourdis NS. Egg size and shape, clutch dynamics, and reproductive effort in European tortoises. Can J Zool 1988; 66:1527–36.

(17) Hewavisenthi S, Parmente CJ. Egg components and utilization of yolk lipids during development of the flatback turtle Natator depressus. J Herpetol 2002; 36: 43–50.

(18) Li-Chan ECY, Powrie W, Nakai S. The chemistry of eggs and eggs products. In: Stadelman WC, ed. Egg science and technology. 4th ed. Binghamton, NY : Food Product Press, The Haworth Press, 1995: 105–75.

(19) Castro-Gonzalez MI, Perez-Gil Romo F. Chemical composition of eggs of the Olive Ridley Lepidochelys olivacea (Testudines: Cheloniidae) and it's potential as a food source. Rev Biol Trop 2011; 59: 1729–42.

(20) Thompson MB, Speake BK. Energy and nutrient utilisation by embryonic reptiles. Comp Biochem Physiol A Mol Integr Physiol 2002; 133: 529–38.

(21) Blanvillain G, Owens DW, Kuchling G. Hormones and reproductive cycles in turtles. In: Norris DO, Lopez KH, eds. Hormones and reproduction of vertebrates. Volume 3: Reptiles. San Diego : Elsevier, 2011: 277–303.

(22) Lam JC, Tanabe S, Chan SK, Lam MH, Martin M, Lam PK. Levels of trace elements in green turtle eggs collected from Hong Kong: evidence of risks due to selenium and nickel. Environ Pollut 2006; 144: 790–801.

Downloads

Published

2017-04-02

How to Cite

Stvarnik, M., Bajc, Z., Šinigoj Gačnik, K., & Dovč, A. (2017). EVALUATION OF DIFFERENT CHEMICAL COMPOSITIONS IN EGGS OF THE HERMANN’S TORTOISE (Testudo hermanni). SLOVENIAN VETERINARY RESEARCH, 54(1). Retrieved from https://slovetres.si/index.php/SVR/article/view/142

Issue

Section

Original Research Article