• Hamza Eid Department of Bacteriology, Immunology and Mycology - Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
  • Heba El-Mahallawy Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management - Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
  • Hassnaa Elsheshtawy Department of Fish diseases and Management- Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
  • Amany Shalaby Department of Food Hygiene, Animal Health Research Institute, Port Said Branch, Port Said, Egypt
  • Mera Shetewy Free Veterinarian, Port Said, Egypt
  • Nada Eidaroos Department of Bacteriology, Immunology and Mycology - Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt



Abstract: This study was conducted to investigate the prevalence, antimicrobial susceptibility, and molecular characterization of Aeromonas spp. from wild Nile tilapia from Lake Manzala and the lake water. Swabs from the surface, gills, and internal organs of apparently healthy Nile tilapia (n =100) and lake water (n = 25) were collected and examined bacteriologically for the presence of Aeromonas spp. The isolates obtained were tested for their susceptibility to 11 antimicrobial agents using the disk diffusion method. The presence of antibiotic resistance genes (blaTEM, sul1, tetA(A), and aadA1) and virulence genes (enterotoxins) (alt, ast, and act) was determined using conventional polymerase chain reaction. Overall, Aeromonas spp. were recovered from 69% of Nile tilapia (Oreochromis niloticus) samples and 80% of water samples. Four types of aeromonads were detected in all the samples examined, namely, A. hydrophila, A. sobria, A. caviae, and A. schubertii, with A. hydrophila predominating in both the fish and the lake water samples. The antimicrobial resistance profiles of the isolates showed very high resistance to ampicillin, penicillin, sulfamethoxazole/trimethoprim, and oxytetracycline and considerable resistance to streptomycin. However, all isolates were sensitive to cefotaxime. Molecular characterization revealed the presence of the act (100%) and alt (37.5%) genes, but ast was not found in any of the isolates. Specific amplification bands of the antimicrobial resistance genes blaTEM, sul1, and tetA(A) were detected in all the tested isolates, whereas aadA1 (12.5%) was found only in one isolate of A. hydrophila from Nile tilapia. The presence of these enterotoxigenic and resistant Aeromonas spp. in the fish and water samples from Lake Manzala could pose a potential public health threat to human consumers and fish handlers in the study area; moreover, these species carry a risk for the transfer of resistance genes to other microbial communities in the lake.

Key words: Aeromonas hydrophile complex; enterotoxin genes; antibiotic resistance genes; Oreochromis niloticus; Lake Manzala


Izvleček: Namen te študije je bil raziskati razširjenost in protimikrobno občutljivost ter molekularno karakterizirati bakterijo Aeromonas spp., izolirane iz divje nilske talapije in vode iz jezera Manzala. Zbrali smo brise površine, škrg in notranjih organov navidezno zdrave nilske tilapije (n = 100) in vzorce vode (n = 25), ki smo jih bakteriološko pregledali na prisotnost bakterije Aeromonas spp. Pridobljene izolate smo testirali na občutljivost za 11 protimikrobnih sredstev z metodo difuzije diska. Prisotnost genov za odpornost proti antibiotikom (blaTEM, sul1, tetA(A) in aadA1) in genov za virulenco (enterotoksini; alt, ast in act) smo določili z običajno verižno reakcijo s polimerazo. Skupno smo Aeromonas spp. odkrili v 69% vzorcev nilske tilapije in 80% vzorcev vode. V vseh pregledanih vzorcih smo odkrili štiri vrste bakterij in sicer A. hydrophila, A. sobria, A. caviae, in A. schubertii, od katerih je A. hydrophila prevladovala v vzorcih rib in jezerske vode. Profili protimikrobne odpornosti izolatov so pokazali zelo visoko odpornost na ampicilin, penicilin, sulfametoksazol/trimetoprim in oksitetraciklin ter znatno odpornost na streptomicin. Izolati so bili občutljivi na cefotaksim. Molekularna karakterizacija je pokazala prisotnost genov  act (100%) in alt (37.5%). Gena ast nismo našli v nobenem izolatu. Geni za protimikrobno odpornost blaTEM, sul1 in tetA(A) so bili prisotni pri vseh testiranih izolatih, medtem ko je bil gen aadA1 (12.5%) najden samo pri enem izolatu A. hydrophila iz nilske tilapije. Prisotnost enterotoksičnih in odpornih bakterij Aeromonas spp. v vzorcih rib in vode iz jezera Manzala bi lahko predstavljala nevarnost za javno zdravje potrošnikov in oseb, ki rokujejo z ribami na območju študije; poleg tega te vrste predstavljajo tveganje za prenos genov za odpornost na druge mikrobne skupnosti v jezeru.  

Ključne besede: Aeromonas hydrophile kompleks; geni za enterotoksin; geni za rezistenco na antibiotike; Oreochromis niloticus;, jezero Manzala


→ 1. El-Bokhty E-A, Amin A. Current status of Liza ramada (Risso, 1810)(Mugilidae) caught by trammel net (Ballah) at El-Gamil region, Manzala Lake, Egypt. Egypt J Aquat Biol Fish 2020; 24(1): 281–308.

→ 2. GAFRD. Fish statistics year book, 2016. Cairo : The General Authority for fish Resources Development, 2016.

→ 3. Ismail A, Hettiarachchi H. Environmental damage caused by wastewater discharge into the Lake Manzala in Egypt. Am J Biosci Bioeng 2017; 5(6): 141–50.

→ 4. Elnaggar AA, El-Alfy MA. Physiochemical properties of water and sediments in Manzala Lake, Egypt. J Environ Sci 2016; 45(2):157–74.

→ 5. Abdel-Ghaffar F, El-Toukhy A, Al-Quraishy S, et al. Five new myxosporean species (Myxozoa: Myxosporea) infecting the Nile tilapia Oreochromis niloticus in Bahr Shebin, Nile Tributary, Nile Delta, Egypt. Parasitol Res 2008; 103(5): 1197–205.

→ 6. Persson S, Al-Shuweli S, Yapici S, Jensen JN, Olsen KE. Identification of clinical Aeromonas species by rpoB and gyrB sequencing and development of a multiplex PCR method for detection of Aeromonas hydrophila, A. caviae, A. veronii, and A. media. J Clin Microbiol 2015; 53(2): 653–6.

→ 7. Galindo CL, Sha J, Fadl AA, Pillai LL, Chopra AK. Host immune responses to Aeromonas virulence factors. Curr Immunol Rev 2006; 2(1): 13–26.

→ 8. Galindo CL, Chopra AK. Aeromonas and Plesiomonas species. In: Doyle MP, Beunchal LR, eds. Food microbiology: fundamentals and frontiers 3rd ed. Washington : ASM Press, 2007: 381–400.

→ 9. Guerra IM, Fadanelli R, Figueiró M, et al. Aeromonas associated diarrhoeal disease in south Brazil: prevalence, virulence factors and antimicrobial resistance. Braz J Microbiol 2007; 38(4): 638–43.

→ 10. Tomás J. The main Aeromonas pathogenic factors. ISRN Microbiol 2012; 2012: e256261. doi: 10.5402/2012/256261

→ 11. Piotrowska M, Przygodzińska D, Matyjewicz K, Popowska M. Occurrence and variety of β-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front Microbiol 2017; 8: e863. doi: 10.3389/fmicb.2017.00863

→ 12. Zhong C, Han M, Yang P, et al. Comprehensive analysis reveals the evolution and pathogenicity of Aeromonas, viewed from both single isolated species and microbial communities. mSystems 2019; 4(5): e00252-19. doi: 10.1128/mSystems.00252-19.

→ 13. Kingombe CIB, D'Aoust JY, Huys G, Hofmann L, Rao M, Kwan J. Multiplex PCR method for detection of three Aeromonas enterotoxin genes. Appl Environ Microbiol 2010; 76(2): 425–33.

→ 14. Sha J, Kozlova E, Chopra A. Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity. Infect Immun. 2002; 70(4): 1924–35.

→ 15. Chopra A, Xu X-J, Ribardo D, et al. The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages. Infect Immun 2000; 68(5): 2808–18.

→ 16. Albert MJ, Ansaruzzaman M, Talukder KA, et al. Prevalence of enterotoxin genes in Aeromonas spp. isolated from children with diarrhea, healthy controls, and the environment. J Clin Microbiol 2000; 38(10): 3785–90.

→ 17. Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 2010; 23(1): 35–73.

→ 18. CLSI. Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement. CLSI Document M100-S25, 2015.

→ 19. Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol 2016; 7: e1337. doi: 10.3389/fmicb.2016.01337

→ 20. Gordon L, Giraud E, Ganière JP, et al. Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms. J Appl Microbiol 2007; 102(4): 1167–76.

→ 21. Nawaz M, Khan SA, Khan AA, et al. Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food Microbiol 2010; 27(3): 327–31.

→ 22. Colom K, Pérez J, Alonso R, Fernández-Aranguiz A, Lariño E, Cisterna R. Simple and reliable multiplex PCR assay for detection of bla TEM, bla SHV and bla OXA–1 genes in Enterobacteriaceae. FEMS Microbiol Lett 2003; 223(2): 147–51.

→ 23. Ibekwe AM, Murinda SE, Graves AK. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS One 2011; 6(6): e20819. doi: 10.1371/journal.pone.0020819.

→ 24. Randall L, Cooles S, Osborn M, Piddock L, Woodward MJ. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J Antimicrob Chemother 2004; 53(2): 208–16.

→ 25. El Deen AN, Dorgham-Sohad M, Hassan-Azza H, Hakim A. Studies on Aeromonas hydrophila in cultured Oreochromis niloticus at Kafr El Sheikh Governorate, Egypt with reference to histopathological alterations in some vital organs. World J Fish Mar Sci 2014; 6(3): 233–40.

→ 26. Rather M, Willayat M, Wani S, Hussain S, Shah S. Enterotoxin gene profile and molecular epidemiology of Aeromonas species from fish and diverse water sources. J Appl Microbiol 2019; 127(3): 921–31.

→ 27. Salem M, Zharan E, Saad R, Zaki V. Prevalence, molecular characterization, virulotyping, and antibiotic resistance of motile aeromonads isolated from Nile tilapia farms at northern Egypt. Mansoura Vet Med J 2020; 21(1): 56–67.

→ 28. El-Sayed EM, Shalaby AM, Saleh MH, Abo El-Kheir RE-S. Genotypic identification and evaluation of several selective media for recovery of Aeromonas spp. from different sources. Egypt Acad J Biol Sci G Microbiol 2016; 8(1): 13–31.

→ 29. Zaky MM, Ibrahim ME. Screening of bacterial and fungal biota associated with Oreochromis niloticus in Lake Manzala and its impact on human health. Health 2017; 9(4): 697–714.

→ 30. Abd El-Tawab A, Ashraf, A Saleh O, M Awad S, M Absi H. Phenotypic and genotypic characters on Aeromonas species causing mortality in fishes. Benha Vet Med J 2018 ;35(1): 285–300.

→ 31. Eid H, Soliman Z, Hanafy AS. Molecular detection of some virulence genes in Aeromonas species isolated from fishes and water of Manzala Lake. Suez Canal Vet Med J SCVMJ. 2019; 24(2): 231–43.

→ 32. Wamala SP, Mugimba KK, Mutoloki S, et al. Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fish Aquat Sci 2018; 21: e6. doi:10.1186/s41240-017-0080-x

Dahdouh B, Basha O, Khalil S, Tanekhy M. Molecular characterization, antimicrobial susceptibility and salt tolerance of Aeromonas hydrophila from fresh, brackish and marine fishes. Alexandria J Vet Sci 2016; 48(2): 46–53. doi:10.5455/ajvs.208107

→ 34. Ashbolt NJ. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 2004; 198(13): 229–38.

→ 35. Dumontet S, Pasquale V, Mancino M, Normanno G, Krovacek K. Incidence and characterisation of Aeromonas spp. in environmental and human samples in southern Italy. New Microbiol 2003; 26(2): 215–25.

→ 36. Maimona S, Sabiel Y. Detection of the causative agents of bacterial fish septicemia of tilapia and clarais in Khartoum state. Int J Recent Sci Res 2015; 6: 4374–7.

→ 37. Saleh A, Elkenany R, Younis G. Virulent and multiple antimicrobial resistance Aeromonas hydrophila isolated from diseased Nile tilapia fish (Oreochromis niloticus) in Egypt with sequencing of some virulence-associated genes. Biocontrol Sci 2021; 26(3): 167–76.

→ 38. Baron S, Granier SA, Larvor E, et al. Aeromonas diversity and antimicrobial susceptibility in freshwater: an attempt to set generic epidemiological cut-off values. Front Microbiol 2017; 8: e503. doi: 10.3389/fmicb.2017.00503

→ 39. El-Fadaly H, El-Kadi S, El-Kholy S. Chemical and microbiological examinations of water and fish taken from Manzala Lake of Damietta gavernorate, Egypt. Am J Food Sci Health 2019; 5(2): 50–60.

→ 40. Chung T, Yi S, Kim B, Kim W, Shin G. Identification and antibiotic resistance profiling of bacterial isolates from septicaemic soft-shelled turtles (Pelodiscus sinensis). Vet Med (Praha) 2017; 62(3): 169–77.

→ 41. Shawky LAI. Studies on virulent and antibiotic resistant genes of Aeromonas species isolated from fish: thesis. Ismailia, Egypt : Faculty of Veterinary medicine, Suez canal University, 2015.

→ 42. Roges EM, Gonçalves VD, Cardoso MD, et al. Virulence-associated genes and antimicrobial resistance of Aeromonas hydrophila isolates from animal, food, and human sources in Brazil. BioMed Res Int 2020; 2020: e1052607. doi: 10.1155/2020/1052607

→ 43. Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother 2003; 47(8): 2385–92.

→ 44. Okolie CA. Characterization of antimicrobial resistance genes of Aeromonas spp. isolated from fish and investigation of phytochemical treatment efficacy against resistant isolates: Master dissertation. Durban, South Africa : University of KwaZulu-Natal; 2015.

→ 45. Nwaiwu O, Aduba CC. An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS Microbiol 2020; 6(1): 75–91.

→ 46. Abd El Tawab AA, Maarouf AAA, El Hofy FI, Salimand AO, El Mougy EEA. Molecular studies on antibiotic resistant genes of Aeromonas species isolated from fish. Nat Sci 2017; 15(12): 90–7.

→ 47. Ndi O, Barton M. Incidence of class 1 integron and other antibiotic resistance determinants in Aeromonas spp. from rainbow trout farms in Australia. J Fish Dis 2011; 34(8): 589–99.

→ 48. Ranjbar R, Salighehzadeh R, Sharifiyazdi H. Antimicrobial resistance and incidence of integrons in Aeromonas species isolated from diseased freshwater animals and water samples in Iran. Antibiotics 2019; 8(4): e198. doi: 10.3390/antibiotics8040198

→ 49. Zhang DX, Kang YH, Song MF, et al. Identity and virulence properties of Aeromonas isolates from healthy Northern snakehead (Channa argus) in China. Lett Appl Microbiol 2019; 69(2): 100–9.

→ 50. Khor WC, Puah SM, Tan JAMA, Puthucheary S, Chua KH. Phenotypic and genetic diversity of Aeromonas species isolated from fresh water lakes in Malaysia. PLoS One 2015; 10(12): e0145933. doi: 10.1371/journal.pone.0145933

→ 51. De Silva B, Hossain S, Wimalasena S, Pathirana H, Heo GJ. Putative virulence traits and antibiogram profile of Aeromonas spp. isolated from frozen white‐leg shrimp (Litopenaeus vannamei) marketed in Korea. J Food Saf. 2018; 38(4): e12470. doi: I:10.1111/jfs.12470

→ 52. Didugu H, Thirtham M, Nelapati K, et al. A study on the prevalence of Aeromonas spp. and its enterotoxin genes in samples of well water, tap water, and bottled water. Vet World 2015; 8(10): 1237–42.

→ 53. Hu M, Wang N, Pan Z, Lu C, Liu Y. Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Lett Appl Microbiol 2012; 55(3): 224–33.




How to Cite




Original Research Article