EFFECTS OF SELECTION IN TERMS OF MEAT YIELD TRAITS ON LEPTIN RECEPTOR GENE IN JAPANESE QUAIL LINES

Authors

  • Kemal Karabağ Akdeniz University Faculty of Agriculture Department of Agricultural Biotechnology
  • Sezai Alkan Ordu University Faculty of Agriculture Department of Animal Science
  • Taki Karslı Akdeniz University Faculty of Agriculture Department of Animal Science
  • Cengiz İkten Akdeniz University Faculty of Agriculture Department of Plant Protection
  • İnci Şahin Selçuk University Faculty of Agriculture Department of Plant Protection
  • Mehmet Mendeş Çanakkale Onsekiz Mart University Faculty of Agriculture Department of Animal Science

DOI:

https://doi.org/10.26873/SVR-1316-2022

Abstract

Abstract: This study was carried out to investigate the effects of selection on the single nucleotide polymorphisms (SNPs) in coding sequence of leptin receptor (LEPR) gene and possible associations between SNPs’ and some meat yield traits of Japanese quail lines. Fifteen generations divergently selected two lines (HBW and LBW) for 5-weeks of age body weight and a control were used as materials for this study. A 348-bp part of the LEPR coding region (18th exon) were sequenced in a total of 113 individuals from the three quail lines and shown that the fragments contained four SNPs loci (T490C, C528T, G537A, T571C) and five haplotypes (TTGT, CTGT, TCGT, TCAT, TCAC). T490C replacement caused the missense mutation of phenylalanine to convert to leucine (Phe>Leu). However, other SNPs were synonymous and there were no changes in transcripts. It was determined that the quails with higher phenotypic values were in the TT genotype at the T390C locus. Statistical analyses showed that there were significant differences among the quail lines, SNP alleles and haplotypes in terms of interested phenotypic traits (P<0.05), and also SNP and haplotype distributions changed depending on quail lines (P><0.001). When all results were evaluated together, it was concluded that the fifteen generations of selection caused significant changes in the LEPR gene in terms of economically important traits in Japanese quail lines (C. coturnix japonica). Key words: SNP; haplotype; leptin receptor; selection; Japanese quail><0.05) and also SNP and haplotype distributions changed depending on quail lines (P<0.001). When all results were evaluated together, it was concluded that the fifteen generations of selection caused significant changes in the LEPR gene in terms of economically important traits in Japanese quail lines (C. coturnix japonica).

Key words: SNP; haplotype; leptin receptor; selection; Japanese quail

UČINKI SELEKCIJE LINIJ JAPONSKIH PREPELIC NA GEN ZA LEPTINSKI RECEPTOR, POVEZAN S PRIREJO MESA

Izvleček: Ta študija je bila izvedena z namenom raziskati učinke selekcije na polimorfizme posameznih nukleotidov (Angl., Single Nucleotide Polymorphism, SNP) v kodnem zaporedju gena za leptinski receptor (LEPR) in možne povezave med SNP in nekaterimi značilnostmi prireje mesa pri japonskih prepelicah. V študiji je bilo poleg kontrole uporabljenih petnajst generacij različno izbranih dveh linij (HBW in LBW) s telesno maso pri starosti petih tednov. 348-bp del kodne regije LEPR (18. ekson) je bil sekvenciran pri skupno 113 posameznikih iz treh linij prepelic, fragmenti pa so vsebovali štiri lokuse SNP (T490C, C528T, G537A, T571C) in pet haplotipov (TTGT, CTGT, TCGT, TCAT, TCAC). Zamenjava T490C je povzročila drugačnosmiselno mutacijo fenilalanina v levcin (Phe > Leu), vendar so bili drugi SNP-ji sinonimni in v transkriptih ni bilo sprememb. Ugotovljeno je bilo, da so prepelice z višjimi fenotipskimi vrednostmi imele genotip TT na lokusu T390C. Statistične analize so z vidika fenotipskih lastnosti pokazale značilne razlike med linijami prepelic, aleli SNP in haplotipi (P < 0,05), med linijami prepelic pa je bila različna tudi porazdelitev SNP in haplotipov (P < 0,001). Na podlagi vrednotenja vseh rezultatov smo ugotovili, da je selekcija petnajstih generacij linij japonskih prepelic (C. coturnix japonica) povzročila ključne spremembe v genu LEPR, povezanim z gospodarsko pomembnimi lastnostmi prepelic.

Ključne besede: SNP; haplotip; leptinski receptor; selekcija; japosnka prepelica

References

– 1. Macajova M, Lamosova D, Zeman M. Role of leptin in Japanese quail development. Acta Vet Brno 2002; 71: 473–9.

– 2. Macajova M, Lamosova D, Zeman M. Role of leptin in farm animals: a review. J Vet Med A 2004; 51: 157–66.

– 3. Taouis M, Chen JW, Daviaud C, Dupont J, Derouet M, Simon J. Cloning the chicken leptin gene. Gene 1998; 208: 239–42.

– 4. Ashwell CM, Czerwinski SM, Brocht D, McMurtry M. Hormonal regulation of leptine expression in broiler chickens. Am J Physiol 1999; 276: 226–32.

– 5. Horev G, Einat P, Aharoni T, Eshdat Y, Friedman- Einat M. Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene. Mol Cell Endocrinol 2000;162(1/2): 95– 106.

– 6. Denbow DM, Meade S, Robertson A, Mc Murtry JP, Richards M, Ashwell C. Leptin-induced decrease in feed intake in chickens. Physiol Behav 2000; 69: 359–62.

– 7. Kuo AY, Cline MA, Werner E, Siegel PB, Denbow DM. Leptin effects on feed and water intake in lines of chickens selected for high or low body weight. Physiol Behav 2005; 84: 459–64.

– 8. Lamosova D, Macajova M, Zeman M, Mozes S, Jezova D. Effect of in ovo leptin administration on the development of Japanese quail. Physiol Res 2003; 52: 201–9.

– 9. Doyon C, Drouin G, Trudeau VL, Moon TW. Molecular evolution of leptin. Gen Comp Endocrinol 2001; 124: 188–98.

– 10. Wang D, Jiang R, Wang T, Xu C, Kang X, Liu X. 2014. http://www.ncbi.nlm.nih.gov/nuccore/ KJ639903

– 11. Wang D, Xu C, Wang T, et al. Discovery and functional characterization of leptin and its receptors in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2016; 225: 1–12.

– 12. Lagonigro R, Wiener P, Pilla F, Woolliams JA, Williams JL. A new mutation in the coding region of the bovine leptin gene associated with feed intake. Anim Genet 2003; 34: 371–4.

– 13. Huang JX, Lu L, Xi L, Luo XG, Liu B. Effects of age and strain on the expression of leptin receptor, neuropeptide Y and pro-opiomelanocortin in the hypothalamus of young chickens. Br Poult Sci 2011; 51: 696–702.

– 14. Liefers SC, Te-Pas MF, Veerkamp RF, VanDer-Lende T. Associations between leptin gene polymorphisms and production, live weight, energy balance, feed intake, and fertility in Holstein heifers. J Dairy Sci 2002; 85: 1633–8.

– 15. Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J Dairy Sci 2008; 91: 3190–200.

– 16. Chebel RC, Santos JEP. Association between leptin single nucleotide polymorphism and reproductive performance of lactating Holstein cows. Anim Reprod Sci 2011; 127: 126–34.

– 17. Lusk JL. Association of single nucleotide polymorphisms in the leptin gene with body weight and back fat growth curve parameters for beef cattle. J Anim Sci 2007; 85: 1865–72.

– 18. Boucher D, Palin MF, Castonguay F, Gariépy C, Pothier F. Detection of polymorphisms in the ovine leptin (lep) gene: association of a single nucleotide polymorphism with muscle growth and meat quality traits. Can J Anim Sci 2006; 86(1): 31–5.

– 19. El Tarabany MS, Saleh AA, El Araby IE, El Magd MA. Association of LEPR polymorphisms with egg production and growth performance in female Japanese quails.

– 20. Lei MM, Wu SQ, Li XW, Wang CL, Chen Z, Shi ZD. Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens. Reprod Biol Endocrinol 2014; 12: e25. doi: 10.1186/1477-7827-12-25

– 21. Nelson PR, Wludyka PS, Copeland KA. The analysis of means: a graphical method for comparing means, rates, and proportions. Philadelphia : Society for Industrial and Applied Mathematics, 2005.

– 22. Mendeş M, Yiğit S. Comparison of ANOVA-F and ANOM tests with regard to type I error rate and test power. J Stat Comput Simul 2013; 83(11): 2093–104.

– 23. Mendeş M, Yiğit S. An alternative approach for multiple comparison problems when there are a large number of groups: ANOM technique. J Anim Plant Sci 2018; 28: 1074–9.

– 24. Yalçin S, Oğuz I, Otles S. Carcass characteristics of quail (Coturnix coturnix japonica) slaughtered at different ages. Br Poult Sci 1995; 36: 393–9.

– 25. Göksoy EO, Mc Kinstry LJ, Wilkins LJ, et al. Broiler stunning and meat quality. Poult Sci 1999; 78: 1796–800.

– 26. Dridi S, Buyse J, Decuypere E, Taouis M. Potential role of leptin in increase of fatty acid synthase gene expression in chicken liver. Domest Anim Endocrinol 2005; 29: 646–60.

– 27. Jiang ZH, Gibson JP. Genetic polymorphisms in the leptin gene and their association with fatness in four pig breeds. Mamm Genome 1999; 10: 191–3.

– 28. Chen CC, Chang T, Su HY. Characterization of porcine leptin receptor polymorphisms and their association with reproduction and production traits. Anim Biotechnol 2007; 15: 89–102.

– 29. El Moujahid EM, Chen S, Jian S, Lu Y, Zhang D, Congliang, J, Yang N. Association of leptin receptor gene polymorphisms with growth and feed efficiency in meat-type chickens. Poult Sci 2014; 93: 1910–5.

– 30. De Vuyst EA, Bauer ML, Cheng FC, Mitchell J, Larson D. The impact of a leptin gene SNP on beef calf weaning weights. Anim Genet 2008; 39: 284–6.

– 31. Perez-Montarelo D, Fernandez A, Folch JM, et al. Joint effects of porcine leptin and leptin receptor polymorphisms on productivity and quality traits. Anim Genet 2012; 43: 805–9.

– 32. Buchanan FC, Van Kessel AG, Waldner C, Christensen DA, Laarveld B, Schmutz SM. Hot topic: an association between a leptin single nucleotide polymorphism and milk and protein yield. J Dairy Sci 2003; 86:3164–6.

– 33. Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Sel Evol 2002;

– 34: 105–16. 34. Wang Y, Li H, Zhang YD, Gu ZL, Li ZH, Wang QG. Analysis on Association of a SNP in the chicken OBR gene with growth and body composition traits. Asian-Aust J Anim Sci 2006; 19(12): 1706–10.

– 35. Abbasi HA, Gharahveysi S, Abdullahpour R. Study of polymorphism of leptin gene receptor in Mazandaran fowls. Afr J Biotechnol. 2011; 10: 4024–8.

Downloads

Published

2022-06-30

How to Cite

Karabağ, K., Alkan, S., Karslı, T., İkten, C., Şahin, İnci, & Mendeş, M. (2022). EFFECTS OF SELECTION IN TERMS OF MEAT YIELD TRAITS ON LEPTIN RECEPTOR GENE IN JAPANESE QUAIL LINES. SLOVENIAN VETERINARY RESEARCH, 59(2). https://doi.org/10.26873/SVR-1316-2022

Issue

Section

Original Research Article