EVALUATION OF COMMERCIAL TORTOISE AND TURTLE FEEDS

Authors

  • Nikoletta Hetényi University of Veterinary Medicine, Budapest, Hungary Department of Animal Breeding, Nutrition and Laboratory Animal Science https://orcid.org/0000-0001-8772-0868
  • Emese Andrásofszky University of Veterinary Medicine, Budapest, Hungary Department of Animal Breeding, Nutrition and Laboratory Animal Science

DOI:

https://doi.org/10.26873/SVR-1216-2022

Abstract

Captive chelonians should be fed a natural diet to achieve a growth rate similar to that of free-ranging animals. A wide range of commercially formulated foods dedicated to chelonians is available. Feeding commercial foods has the advantage of convenience. On the other hand, species-specific information on the nutritional requirements of chelonians is not available yet. The aim of this study was to analyse and evaluate commercial pellets and feeds for chelonians. Commercial pellets (ntortoise = 7, nturtle = 7, from 6 companies) dedicated to carnivorous aquatic turtles and herbivorous terrestrial tortoises, and other aquatic turtle feeds (lyophilised beef heart, dried aquatic invertebrates, and whole frozen fish) were bought in pet shops. Whole frozen fish served as a reference feed for carnivorous aquatic turtles. The chemical composition as well as calcium (Ca) and phosphorus (P) contents were determined. Single-sample t-test was used with the label information as null hypothesis and the results of own parallel analyses for crude protein (CP), ether extract (EE), crude fibre (CF), Ca and P. The labelling of some of the pellets was deficient as nutritive values, Ca or P data were missing (tortoise pellets: 4 out of 7; turtle pellets: 5 out of 7). The label data differed significantly (p<0.05) from the results of our own analysis for 13 out of the 14 pellets. None of the tortoise pellets met the requirements of the animals completely. Because of the inadequate Ca:P ratio only one turtle pellet could be accepted. Accordingly, none of the commercial pellets can be recommended as main or only feed.

Key words: nutrition; pellet; metabolic bone disease; chelonian

 

VREDNOTENJE KOMERCIALNIH ŽELV IN KRME ZA ŽELVE

Izvleček: Želve v ujetništvu je potrebno hraniti z naravno krmo, da dosežejo podobno stopnjo rasti kot živali v prosti reji. Na voljo je širok izbor komercialno pripravljene hrane za želve. Prednost hranjenja želv s komercialno hrano je priročnost, vendar podatki o prehranskih potrebah za posamezne vrste želv še niso na voljo. Namen te raziskave je bil analizirati in ovrednotiti komercialne pelete in krmo za želve. V trgovinah za živali smo od 6 podjetij kupili komercialne pelete  (npeleti za vodne želve = 7, npeleti za kopenkse želve = 7) za mesojede vodne in rastlinojede kopenske želve ter drugo krmo za vodne želve (liofilizirano goveje srce, posušene vodne nevretenčarje in zamrznjene cele ribe). Zamrznjene cele ribe smo uporabili kot referenčno krmo za mesojede vodne želve. Določili smo  kemično sestavo in vsebnost kalcija (Ca) ter fosforja (P). Za ničelno hipotezo smo uporabili T-test enega vzorca s podatki na etiketi  in rezultate lastne paralelne analize za surove beljakovine  (an gl. crude proteins, CP), ekstrakt etra (angl. ether extract, EE), surovo  vlaknino (angl. crude fibre, CF), Ca in P. Oznake nekaterih peletov so bile pomanjkljive, saj so manjkali podatki o hranilnih vrednostih, Ca in P (npeleti za kopenske želve = 4 od 7, npeleti za vodne želve  = 5 od 7). Podatki na etiketi so se bistveno razlikovali (p < 0,05) od rezultatov  naše analize pri 13 od 14 vrst peletov. Nobeni peleti za kopenske želve niso v celoti izpolnjevali potreb živali. Zaradi neustreznega  razmerja Ca : P smo kot ustrezno določili le eno izmed 7 vrst peletov za vodne želve, zaradi česar nobenih od komercialnih peletov  nismo določili kot priporočljivih za glavno ali edino krmo za želve.

Ključne besede: prehrana; peleti; presnovna bolezen kosti; želve

References

● 1. McArthur S. Problem solving approach to common diseases of terrestrial and semi-aquatic chelonians. In: McArthur S, Wilkinson R, Meyer J, Innis JC, Hernandez-Divers S, eds. Medicine and surgery of tortoises and turtles. Oxford : Blackwell Publishing, 2004: 309−77.

● 2. Ritz J, Griebeler EM, Huner R, Clauss M. Body size development of captive and free-ranging African spurred tortoise (Geochelone sulcata): high plasticity in reptilian growth rates. Herpetol J 2010; 20: 213−16.

● 3. Ritz J, Hammer C, Clauss M. Body size development of captive and free-ranging Leopard tortoise (Geochelone pardalis). Zoo Biol 2010; 29: 517−25. doi:10.5167/uzh-36147.

● 4. Mans C, Braun J. Update on common nutritional disorders of captive reptiles, Vet Clin North Am Exot Anim Pract 2014; 17: 369−95. doi: 10.1016/j.cvex.2014.05.002.

● 5. Boyer TH, Scott PW. Nutritional diseases. In: Divers S, Stahl S, eds. Mader's reptile and amphibian medicine and surgery. 3rd ed. St. Louis : Saunders Elsevier, 2019: 932−50.

● 6. Dreslik MJ. Dietary notes on the red-eared slider (Trachemys scripta) and River Cooter (Pseudemys concinna) from Southern Illinois. Trans Ill State Acad Sci 1999; 92: 233−41.

● 7. El Mouden EH, Slimani T, Kaddour KB, Lagarde F, Ouhammou A, Bonnet X. Testudo graeca graeca feeding ecology in an arid and overgrazed zone in Morocco. J Arid Environ 2006; 64: 422−35. doi:10.1016/j.jaridenv.2005.06.010.

● 8. Rouag R, Ferrah C, Luiselli L, Tiar G, Benyacoub S, Ziane N, El Mouden E. Food choice of an Algerian population of the spur-thighed tortoise, Testudo graeca. Afr J Herpetol 2008; 57: 103−13. doi: 10.1080/21564574.2008.9635573.

● 9. Hazard LC, Shemanski DR, Nagy KA. Nutritional quality of natural foods of juvenile and adult Desert tortoises (Gopherus agassizii): calcium, phosphorus, and magnesium digestibility. J Herpetol 2010 44: 135−47. doi:10.1670/08-134.1.

● 10. Del Vecchio, S, Burke R.L, Rugiero L, Capula M, Luiselli L. Seasonal changes in the diet of Testudo hermanni hermanni in central Italy. Herpetologica 2011; 67: 236−49. doi:10.1655/HERPETOLOGICA-D-10-00064.1.

● 11. Çiçek K, Ayaz D. Food composition of the European pond turtle (Emysorbicularis) in Lake Sülüklü (Western Anatolia, Turkey). J Freshw Ecol 2011; 26: 571−8. doi: 10.1080/02705060.2011.580536.

● 12. Iftime A, Iftime O. Long term observations on the alimentation of wild Eastern Greek tortoises Testudo graeca ibera (Reptilia: Testudines: Testudinidae) in Dobrogea, Romania. Acta Herpetol 2012; 7: 105−10. Doi: 10.13128/Acta_Herpetol-9800.

● 13. Shelley JR, Kaufman L. Report on the analysis of the wild diet of Testudo werneri. http://www.nature-conservation.org.il/. Nature conservation. 2012.

● 14. Boyer TH, Scott PW. Nutrition. In: Divers S, Stahl S, eds. Mader's reptile and amphibian medicine and surgery. 3rd ed. St. Louis : Saunders Elsevier, 2019: 201−23.

● 15. Furrer SC, Hatt J-M, Snell H, Marquez C, Honegger RE, Rübel A. Comparative study on the growth of juvenile Galapagos giant tortoises (Geochelone nigra) at the Charles Darwin Research Station (Galapagos Islands, Ecuador) and Zoo Zurich (Zurich, Switzerland). Zoo Biol 2004; 23: 177−83. doi:10.1002/zoo.10130.

● 16. Mader DR, Divers S. Reptile medicine and surgery. 2nd ed. St. Louis : Saunders Elsevier, 2006: 1241 pp.

● 17. Kik MJL, Dorrestein GM, Beynen AC. Evaluation of 15 commercial diets and their possible relation to metabolic bone diseases in different species of reptiles. In: Proc. 41. Internationalen Symposiums über die Erkrankungen der Zoo- und Wildtiere, Rome, Italy, 2003: 87−90.

● 18. AOAC. Official methods of analysis of the AOAC. 15th ed. Arlington : Association of official analytical chemists, 1990.

● 19. McArthur S, Barrows M. Nutrition. In: McArthur S, Wilkinson, R, Meyer J, Innis JC, Hernandez-Divers S, eds. Medicine and surgery of tortoises and turtles. Oxford : Blackwell Publishing, 2004: 73−86.

● 20. Bauer T, Reese S, Koelle P: Nutrition and husbandry conditions of Palearctic tortoises (Testudo spp.) in captivity. J Appl Anim Welf Sci 2019; 22: 1–12. doi: 10.1080/10888705.2018.1453814.

● 21. Wang E, Donatti CI, Ferreira VL, Raizer J, Himmelstein J. Food habits and notes on the biology of Chelonoidis carbonaria (Spix 1824) (Testudinidae, Chelonia) in the Southern Pantanal, Brazil. South Am J Herpetol 2011; 6: 11−9. doi: 10.2994/057.006.0102.

● 22. Buskirk JR, Keller C, Andreu AC. Testudo graeca Linnaeus, 1758 – Maurische Landschildkroten. In: Fritz, U, ed. Schildkroten (Testudines) I, Handbuch der Reptilien und Amphibien Europas. Wiebelsheim : Aula Verlag, 2001: 126−78.

● 23. Johnson JD, Averill-Murray RC, Jarchow JL. Captive care of the desert tortoise, Gopherus agassizii. J Herp Med Surg 2001; 11: 8−11. doi: doi.org/10.5818/1529-9651.11.3.8.

● 24. Wiesner CS, Iben C. Influence of environmental humidity and dietary protein on pyramidal growth of carapaces in African spurred tortoises (Geochelone sulcata). J Anim Physiol Anim Nutr 2003; 87: 66−74. doi:10.1046/j.1439-0396.2003.00411.x.

● 25. Lapid RH, Nir I, Robinzon B. Growth and body composition in captive Testudo graeca terrestris fed with a high-energy diet. Appl Herpetol 2005; 2: 201−9. doi: 10.1163/1570754043492090

● 26. Hazard LC, Shemanski DR, Nagy KA. Nutritional quality of natural foods of juvenile desert tortoises (Gopherus agassizii): energy, nitrogen, and fiber digestibility. J Herpetol 2009; 43: 38−48. doi: 10.1670/07-160R1.1.

● 27. Lagarde F, Bonnet X, Corbin J. Naulleau G. Foraging behaviour and diet of an ectothermic herbivore: Testudo horsfieldi. Ecography 2013; 26: 236-242. doi: 10.1034/j.1600-0587.2003.03365.x.

● 28. Hansen RM, Johnson MK, Van Devender TR. Foods of the desert tortoise Gopherus agazzissi in Arizona and Utah. Herpetologica 1976; 32: 247-51.

● 29. Hatt JM, Clauss M, Gisler R, Liesegang A Wanner M. Fiber digestibility in juvenile Galapagos tortoises (Geochelone nigra) and implications for the development of captive animals. Zoo Biol 2005; 24: 185–191. doi: 10.1002/zoo.20039.

● 30. Barboza PS. Digesta passage and functional anatomy of the digestive tract in the desert tortoise (Xerobates agassizii). J Comp Physiol B 1995; 165: 193-202. doi: 0.1007/BF00260810.

● 31. McMaster M.K., Downs CT. Digestive parameters and water turnover of Leopard tortoises. Comp Biochem Physiol 2008; 151: 114–25. doi: 10.1016/j.cbpa.2008.06.007.

● 32. Franz R, Hummel J, Müller DWH, Bauert M, Hatt JM, Clauss M. Herbivorous reptiles and body mass: effects on food intake, digesta retention, digestibility and gut capacity, and a comparison with mammals. Comp Biochem Physiol A 2011; 158: 94–101. doi: 10.1016/j.cbpa.2010.09.007.

● 33. Lambert MR: Studies on the growth, structure and abundance of the Mediterranean spur-thighed tortoise, Tesudo graeca in field populations. J Zool 1982; 196: 165–89. doi: 10.1111/j.1469-7998.1982.tb03499.x.

● 34. Ritz J, Clauss, M, Streich WJ, Hatt JM. Variation in growth and potentially associated health status in Hermann’s and spur-thighed tortoises (Testudo hermanni and Testudo graeca). Zoo Biol 2012; 31: 705–17. doi: 10.1002/zoo.21002.

● 35. Oftedal OT. Nutritional ecology of the desert tortoise in the Mojave and Sonoran deserts. In: Van Denever TR, ed. The Somoran desert tortoise natural history, biology and conservation. Tucson : University of Arizona Press, 2002: 194−41.

● 36. García-Feria LM, Ureńa-Aranda CA. Nonspecific coprophagy of a free-ranging neonate Gopherus flavomarginatus Legler, 1959. Herpetozoa 2018; 30: 209−11. doi: 10.2305/iucn.uk.2007.rlts.t9402a12983328.en.

● 37. Bjorndal KA. Digestive efficiency in a temperate herbivorous reptile, Gopherus polyphemus. Copeia 1987; 3: 714−20.

● 38. Yuan ML, Dean SH, Longo A, Rothermel BB, Tuberville TD, Zamudio KR. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise. Mol Ecol 2015; 24: 2521–36. doi: 10.1111/mec.13169.

● 39. Bjorndal KA, Bolten AB, Moore JE. Digestive fermentation in herbivores: effect of food particle. Physiol Zool 1990; 63: 710–21. doi: 10.1086/physzool.63.4.30158172.

● 40. Soler J, Martínez-Silvestre A. Coprofagia de Testudo hermanni sobre excrementos de tejón (Meles meles). Bola Asoc Herpetol. Esp 2011; 22: 57−8.

● 41. Moore JA, Dornburg A. Ingestion of fossil seashells, stones and small mammal bones by gravid gopher tortoises (Gopherus polyphemus) in South Florida. Bull Peabody Mus Nat Hist New Haven 2014; 55: 55−63. doi: 10.3374/014.055.0105.

● 42. Suliva BK, Cahill TM. Seasonal timing of consumption of calcium-rich caliche in the Sonoran desert tortoise (Gopherus morafkai) in Central Arizona. Chelonian Conserv Biol 2019; 18: 98−101. doi: 10.2744/CCB-1339.1.

● 43. Fledelius B, Jorgensen GW, Jensen HE, Brimer L. Influence of the calcium content of the diet offered to Leopard tortoises (Geochelone pardalis). Vet Rec 2005; 156: 831−35. doi: 10.1136/vr.156.26.831.

● 44. Liesegang A, Hatt JM., Nijboer J, Forrer R, Wanner M, Isenbügel E. Influence of different dietary calcium levels on the digestibility of Ca, Mg, and P in captive-born juvenile Galapagos giant tortoises (Geochelone nigra). Zoo Biol 2001; 20: 367−74. doi: 10.1002/zoo.1035.

● 45. Liesegang A, Hatt JM, Wanner M. Influence of different dietary calcium levels on the digestibility of Ca, Mg, and P in Hermann’s tortoises (Testudo hermanni). J Anim Phisiol Anim Nutr 2007; 91: 459−64. doi: 10.1111/j.1439-0396.2007.00676.x.

● 46. Jarchow JL. Veterinary management of the desert tortoise, GopherliS agassizii at the Arizona Sonora Desert Museum: a rational approach to diet. In: Proceedings of Desert Tortoise Council Symposium, 1984: 83−94.

● 47. Rawski M, Józefiak D. Body condition scoring and obesity in captive African side-neck turtles (Pelomedusidae). Ann Anim Sci 2014; 14: 573–84. doi: 10.2478/aoas-2014-0037

● 48. Wappel SM, Schulte MS. Turtle care and husbandry. Vet Clin North Am Exot Anim Pract 2004; 7: 447−72. doi: 10.1016/j.cvex.2004.03.002.

● 49. Zwart P. Nutrition of tortoises and terrapins. In: Proceedings of the first International Congress of. Chelonian Pathology. Gonfaron, Var, France, 1992: 156−63.

● 50. Avery HW, Spotila R, Congdon JD, Fischer RU, Standora EA, Avery SB. Roles of diet protein and temperature in the growth and nutritional energetics of juvenile slider turtles, Trachemys scripta. Physiol Biochem Zool 1993; 66: 902−25. doi: 10.1086/physzool.66.6.30163746.

● 51. Eisemberg CC, Stephen J. Reynoldsa, Keith A. Christiana, Richard C. Vogt: Diet of Amazon river turtles (Podocnemididae): a review of the effects of body size, phylogeny, season and habitat. Zoology 2017; 120: 92−100. doi: 10.1016/j.zool.2016.07.003.

● 52. De La Ossa J, Vogt RC, Santos-Júnior LB: Feeding of Peltocephalus dulmerilianus (Testudines: Podocnemididae) in a natural environment. Actu Biol 2011; 33: 85−92.

● 53. Bouchard SS, Bjordnal K: Ontogenetic Diet Shifts and Digestive Constraints in the Omnivorous Freshwater Turtle Trachemys scripta. Physiol Biochem Zool 2006; 79:150−8. doi: 10.1086/498190.

● 54. Gibbson JW: Editor. Life history and ecology of the slider turtle. Washington D.C., USA, Smithsonian Institution Press, 1990. 368 pp. doi: 10.1126/science.250.4984.1164.

● 55. Luiselli L, Akani GC, Ebere N, Rugiero L, Vignoli L, Angelivi FM: Eniang EA, Behangana N: Food habits of a pelomedusid turtle, Pelomedusa subrufa, in tropical Africa (Nigeria): The effects of sex, body size, season, and site. Chelonian Conserv Bi 2011; 10: 138−44. doi: 10.2744/CCB-0843.1.

● 56. Ottonello D, Salvidio S, Rosecchi E: Feeding habits of the European pond terrapin Emys orbicularis in Camargue (Rhône delta, Southern France). Amphib-Reptil. 2005; 26: 562. doi: 10.1163/156853805774806241.

● 57. Rhodin A, Ibarrondo B, Kuchling G: Chelodina mccordi Rhodin 1994 – Roti Island snake-necked turtle, McCord’s snake-necked turtle, kura-kura rote. Chelonian Conserv Bi 2008; 5: 001−8. doi: 10.3854/crm.5.008.mccordi.vl.

● 58. Spencer RJ, Thompson MB, Hume ID: The diet and digestive energetics of an Australian short-necked turtle, Emydura macquarii. Comp Biochem Phys A 1998; 121: 341−49. doi: 10.1016/s1095-6433(98)10132-0.

● 59. Bjorndal KA: Diet mixing: nonadditive interactions of diet items in an omnivorous freshwater turtle. Ecology 1991; 72: 1234-−41. doi: 10.2307/1941097.

● 60. Bjorndal KA, Bolten AB: Digestive efficiencies in herbivorous and omnivorous freshwater turtles on plant diets: do herbivores have a nutritional advantage? Physiol Biochem Zool 1993; 66: 384−95. 10.1086/physzool.66.3.30163699.

● 61. Jia Y, Yang Z, Hoa Y, Gao Y: Effects of animal–plant protein ratio in extruded and expanded diets on nitrogen and energy budgets of juvenile Chinese soft-shelled turtle (Pelodiscus sinensis Wiegmann). Aquacul Res 2005; 36: 61−8. doi: 10.1111/j.1365-2109.2004.01184.x.

● 62. Nuangseang B, Boonyaratapalin M: Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann. Aquacult Res 2001; 32: 106−11. doi: 10.1046/j.1355-557x.2001.00049.x.

● 63. Zhou F, Ding XY, Feng H, Xu YB, Xue HL, Zhang JR, Ng WK: The dietary protein requirement of a new Japanese strain of juvenile Chinese soft shell turtle, Pelodiscus sinensis. Aquaculture 2013 412: 74–80. doi: 10.1016/j.aquaculture.2013.07.018.

● 64. Xie QS, Yang ZC, Li JW, Li YJ: Effect of protein restriction with subsequent re‐alimentation on compensatory growth of juvenile soft‐shelled turtles (Pelodiscus sinensis). Aquac Int 2012; 20: 19–27. https://doi.org/10.1007/s10499-011-9438-8.

● 65. Zhong Y, Pan Y, Liu L, Li H, Li Y, Jiang J, Xiang J, Zhang J, Chu W: Effects of high fat diet on lipid accumulation, oxidative stress and autophagyin the liver of Chinese softshell turtle (Pelodiscus sinensis). Comp Biochem Physiol B 2020; 240. doi:10.1016/j.cbpb.2019.110331.

● 66. Sun C‐X, Xu W‐N, Li X‐F, Zhang D‐D, Qian Y, Jiang G‐Z, Liu W‐B: Effects of fish meal replacement with animal protein blend on growth performance, nutrient digestibility and body composition of juvenile Chinese soft‐shelled turtle Pelodiscus sinensis. Aquac Nutr 2016; 22: 315−25. https://doi.org/10.1111/anu.12247.

● 67. Sun C-X, Xu W-N, Zhang D-D, Li X-F, Li P-F, Jiang G-Z, Liu W-B: Different preference is modulated by the feeding stimulant supplementation in different Chinese soft-shelled turtle (Pelodiscus sinensis) basic diets. Aquac Nutr 2018; 24:195−203. doi:10.1111/anu.12547.

● 68. Zhou F, Wang YQ, Ding XY, Ng WK, He F, Xue HL: Partial Replacement of Fish Meal by Soy Protein Concentrates in Diets for a New Japanese Strain of Juvenile Soft-Shelled Turtle, Pelodiscus sinensis. Aquac Res 2016; 47: 875−86. http://dx.doi.org/10.1111/are.12548

● 69. Meers, M. B., K. L. Robinson, D. Smith, A. Scordino, and L. Fisher: Effect of diet on growth in captive Podocnemis unifilis: assessing optimal diets for turtles in head-starting programs. Bull Fla Mus Nat His 2016; 54(4):58–68.

● 70. Wang J, Qi Z, Yang Z: Effects of Dietary Protein Level on Nitrogen and Energy Budget of Juvenile Chinese Soft-shelled Turtle, Pelodiscus sinensis, Wiegmann. J World Aquac Soc 2016; 47: 450−8 doi: 10.1111/jwas.12280.

● 71. Kou H, Miao Y, Pan X, Yan LX, Wang AN, Lin L: Impact of dietary cornstarch levels on growth performance, body composition and digestive enzyme activities of juvenile soft-shelled turtle (Pelodiscus sinensis). Ann Anim Resour Sci 2018; 18: 1029−43. doi: 10.2478/aoas-2018-0040.

● 72. Lin WY, Huang CH: Fatty acid composition and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis, fed different dietary lipid sources. Comp Biochem Phys C 2007; 144: 327−33. doi: 10.1016/j.cbpc.2006.10.006.

● 73. McWilliams D: Nutrition research on calcium homeostasis. II. Freshwater turtles (with recommendations). Int Zoo Yearbook, 2005; 39: 77−85. doi: 10.1111/j.1748-1090.2005.tb00007.x

● 74. Stancel CF, Dierenfeld ES, Schoknecht PA: Calcium and phosphorus supplementation decreases growth, but does not induce pyramiding, in young red-eared sliders, Trachemys scripta elegans. Zoo Biol 1998; 17: 17–24. doi: 10.1002/(SICI)1098-2361(1998)17:1<17::AID-ZOO2>3.0.CO;2-D.

● 75. Huang CH, Lin WY, Wu SM: Effect of dietary calcium and phosphorus supplementation in fish meal-based diets on the growth of soft-shelled turtle Pelodiscus sinensis (Wiegmann). Aquacult Res 2003; 34: 843−8. doi: 10.1046/j.1365-2109.2003.00891.x.

Downloads

Published

2022-11-02

How to Cite

Hetényi, N., & Andrásofszky, E. (2022). EVALUATION OF COMMERCIAL TORTOISE AND TURTLE FEEDS. SLOVENIAN VETERINARY RESEARCH, 59(3). https://doi.org/10.26873/SVR-1216-2022

Issue

Section

Original Research Article