ANTI-DIABETIC EFFECT OF ETHANOL EXTRACT OF Copaifera salikounda (HECKEL) AGAINST ALLOXAN-INDUCED DIABETES IN RATS

Chinyere Aloke, Emmanuel Igwe, Nwogo Obasi, Pascal Amu, Egwu Ogbonnia

Abstract


Accumulating evidences have reinforced the use of medicinal plants in the treatment of various ailments as a result of negative side effects associated with conventional drugs. Plant components such as phenols and flavonoids with antioxidant potential have confirmed protective roles against oxidative stress-induced degenerative diseases like diabetes mellitus (DM). The current study was carried out to investigate the effect of seed pod ethanol extract from Copaifera salikounda (SPEECS) in alloxan-induced diabetic rats. SPEECS was obtained by maceration of seed pod powder in absolute ethanol for 72 h, filtered, concentrated and dried in-vacuo. Gas chromatography-mass spectrometry (GC–MS) technique was used to quantitatively elucidate the chemical constituents of SPEECS. Twenty-four male albino rats were randomly allocated into four groups (n=6): normal control, DM control, DM + 200 mg/kg SPEECS and DM + 400 mg/kg SPEECS groups. DM was induced in the Wistar albino rats through intraperitoneal injection of 200 mg/kg body weight of alloxan. After 14 days of treatment, the body weight changes and the fasting blood glucose level were determined in the different groups. Also, serum biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), albumin (ALB), total protein (TP), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were estimated. The GC-MS results confirm nine bioactive compounds with 9-octadecenoic acid (55.75%) being most abundant. SPEECS (200 and 400 mg/kg) administration significantly (P < 0.05) caused gain in weight, decreased fasting blood glucose and reversed the elevated liver function enzymes (ALT, AST, ALP) while total TP and ALB were markedly elevated relative to DM control group. Furthermore, SPEECS attenuated the activities of SOD and CAT while the level of MDA was significantly (P < 0.05) decreased in dose dependent manner in comparison to the DM control. This study indicated that SPEECS can alleviate hyperglyceamia of DM. 

Key words: Copaifera salikounda; oxidative stress; medicinal plants; diabetes mellitus; phytochemicals; orthodox

 

ANTIDIABETIČNI UČINEK EKSTRAKTA ETANOLA Copaifera salikounda (HECKEL) NA SLADKORNO BOLEZEN, SPROŽENO Z ALLOXAN-om, PRI PODGANAH

Izvleček: Obstaja vedno več dokazov, ki poudarjajo uporabnost zdravilnih rastlin pri zdravljenju različnih bolezni, tudi zaradi različnih negativnih stranskih učinkov, povezanih s konvencionalnimi zdravili. Rastlinske sestavine kot so fenoli in flavonoidi z antioksidativnim potencialom, imajo po nekaterih raziskavah zaščitno vlogo pred degenerativnimi boleznimi, ki jih povzroča oksidativni stres, kot je sladkorna bolezen diabetes mellitus (DM). Študija je bila izvedena z namenom raziskovanja učinka etanolnega semenskega ekstrakta iz rastline Copaifera salikounda (SPEECS) pri podganah s sladkorno boleznijo, ki jo je povzročil alloxan. SPEECS je bil pridobljen z maceracijo praška semen v prahu v absolutnem etanolu 72 ur ter nadaljnjo filtracijo, koncentracijo in sušenjem v vakuumu. Za kvantitativno ugotavljanje kemijskih sestavin SPEECS je bila uporabljena tehnika plinske kromatografije in masne spektrometrije (GC-MS). Štiriindvajset samcev podgan Wistar je bilo naključno razporejenih v štiri skupine (n=6): normalna kontrola, kontrola DM, DM + 200 mg/kg SPEECS in DM + 400 mg/kg SPEECS. DM je bil pri podganah sprožen z intraperitonealno injekcijo 200 mg/kg telesne mase alloxana. Po 14 dneh zdravljenja so bile pri različnih skupinah določene spremembe telesne teže in nivo glukoze v krvi (na tešče). Poleg tega so avtorji raziskave izmerili še nekatere serumske biokemične parametre kot so ravni alaninske aminotransferaze (ALT), aspartatne aminotransferaze (AST), alkalne fosfataze (ALP), albumina (ALB), skupnih proteinov (TP), malondialdehida (MDA), superoksiddismutaze (SOD) in katalaze (CAT). Rezultati GC-MS so v izvlečku SPEECS pokazali devet bioaktivnih spojin, v katerih je največ 9-oktadecenojske kisline (55,75%). SPEECS (200 in 400 mg/kg) je povzročil znatno (P <0,05) povečanje telesne mase, znižanje glukoze v krvi na tešče in znižal raven encimov pokazateljev jetrne funkcije (ALT, AST, ALP), medtem ko je bila raven TP in ALB pri podganah, ki so prejemale SPEECS izrazito povišana v primerjavi z DM kontrolno skupino. Zdravljenje s  SPEECS je tudi oslabilo aktivnosti SOD in CAT, medtem ko se je raven MDA znatno zmanjšala (P <0,05) v primerjavi s kontrolno skupino DM. Ta študija je pokazala, da lahko SPEECS ublaži hiperglikemijo pri sladkorni bolezni pri podganah.

Ključne besede: Copaifera salikounda; oksidativni stres; zdravilne rastline; sladkorna bolezen; fitokemikalije; ortodoksni


Full Text:

PDF

References


Ionut V, Amorin RP. Epidemiology of diabetes mellitus: a current review. Rom J Diabetes Nutr Metab Dis 2012; 19(4): 433–40. doi: 10.2478/v10255-012-0050-0

(2.) Osadebe PO, Uzor PF, Omeje E O, Agbo MO, Obonga WO. Hypoglycemic activity of the extract and fractions of Anthocleista vogelii (Planch) stem bark. Trop J Pharm Res 2014; 13: 1437–43. doi: 10.4314/tjpr.v13i9.9

(3.) Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In Vivo 2009; 23: 245–58.

(4.) Dhanesha N, Joharapurkar A, Shah G, et al. Exendin-4 ameliorates diabetic symptoms through activation of glucokinase. J Diabetes 2012; 4(4): 369–77. doi: 10.1111/j.1753-0407.2012.00193.x

(5.) Bhat AH, Dar KB, Zargar MA, Masood A, Ganie SA. Modulation of oxidative stress and hyperglycemia by Rheum spiciformis in alloxan induced diabetic rats and characterization of isolated compound. Drug Res (Stuttg). 2018; 69(4): 218–26. doi: 10.1055/a-0665-4291

(6.) Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003; 26(5): 1589–96. doi:10.2337/diacare.26.5.1589

(7.) Nishikawa T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Sign 2007; 9(3): 343–53. doi:10.1089/ars.2007.9.ft-19

(8.) Yorek MA. The role of oxidative stress in diabetic vascular and neural disease. Free Radic Res 2003; 37(5): 471–80.

(9.) Cameron NE, Cotter MA, Hohman TC. Interactions between essential fatty acid, prostanoid, polyol pathway and nitric oxide mechanisms in the neurovascular deficit of diabetic rats. Diabetologia 1996; 39(2): 172–82. doi: 10.1007/BF00403960

(10.) Monnier VM. Intervention against the Maillard reaction in vivo. Arch Biochem Biophys 2003; 419(1): 1–15.

(11.) Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17(1): 24–38. doi:10.1002/jbt.10058

(12.) Kaneto H, Fujii J, Suzuki K, et el. DNA cleavage induced by glycation of Cu,Zn-superoxide dismutase. Biochem J 1994; 304(1): 219–25. doi: 10.1042/bj3040219

(13.) Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44–84. doi:10.1016/j.biocel.2006.07.001

(14.) Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54(3): 176–86. doi:10.1136/jcp.54.3.176

(15.) Hui H, Tang G, Go VLW. Hypoglycemic herbs and their action mechanisms. Chin Med 2009; 4: e11. doi: 10.1186/1749-8546-4-11

(16.) Berraaouan A, Abid S, Bnouham M, Berraaouan A. Antidiabetic oils. Curr Diabetes Rev 2013; 9: 499–505.

(17.) Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009; 32: 193–203. doi: 10.2337/dc08-9025.

(18.) Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 2017; 9: e59. doi:10.1186/s13098-017-0254-9

(19.) Xu X, Shan B, Liao CH, Xie JH, Wen P W, Shi JY. Antidiabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int J Biol Macromol 2015; 81: 538–543. doi: 10.1016/j.ijbiomac.2015.08.049

(20.) Oteng-Amoako AA, Obeng EA. Copaifera salikounda Heckel. Record from PROTA4U. In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA, eds. PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afriqutropicale), Wageningen, Netherlands: Wageningen University, 2012. https://prota4u.org/database/protav8.asp?g=pe&p=Copaifera+salikounda+Heckel (February, 2021)

(21.) Aloke C, Ibiam UA, Obasi NA, et al. Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund’s adjuvant induced rheumatoid arthritis in rats. J Food Biochem 2019; 43(7): e12912. doi: 10.1111/jfbc.12912

(22.) Okwu ED, Ighodaro UB. GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the leaves of Alstonia boonei De Wild. Pharma Chem 2010; 2(1): 261–2.

(23.) Lorke D. A new approach to practical acute toxicity tests. Arch Toxicol 1983; 54(4): 275–87.

(24.) Bell RH, Hye RJ. Animal models of diabetes mellitus: physiology and pathology. J Surg Res 1983; 35: 433–60.

(25.) Reitman S, Frankel S. A colorimetric method for the determination of serum glutamate oxaloacetate and pyruvate transaminase. Am J Clin Pathol 1957; 28: 56–63. doi:10.1093/ajcp/28.1.56

(26.) Englehardt VA. Measurement of alkaline phosphatase. Aerztl Labour 1970; 16: 42–3.

(27.) Weichselbaum TE. An accurate and rapid method for the determination of protein in small amount of blood, serum and plasma. Am J Clin Pathol 1946; 10: 40–9.

(28.) Doumas BT, Watson WA, Biggs HG. Albumin standard and measurement of albumin with bromcresol green. Clin Chem Acta 1971; 31(1): 87–96.

(29.) Buege JA, Aust SD. Microsomal lipid peroxidation. In: Flesicher S, Packer L, eds. Methods in enzymology. Vol. 52. New York : Academic Press, 1978: 302–10.

(30.) Fridovich I, Mc-Cord JM. Superoxide dismutase: an enzymatic function for erythrocuperin. J Biol Chem 1969; 244(22): 6045–55.

(31.) Sinha AK. Colorimetric assay of catalase. Anal Biochem 1972; 47(2): 389–94.

(32.) Yakubu MT, Akanji MA, Nafiu MO. Antidiabetic activity of aqueous of Cochlospermum planchonii root in alloxan-induced diabetic. Cameroon J Exp Biol 2010; 6: 91–100.

(33.) Ananda PK, Kumarappan CT, Sunil C, Kalaichelvan VK. Effect of Biophytum sensitivum on streptozotocin and nicotinamideinduced diabetic rats. Asian Pac J Tropical Biomed 2012; 11: 31–5.

(34.) Alamgeer, Rashid M, Bashir S, et al. Comparative hypoglycemic activity of different extracts of Teucrium stocksianum in diabetic rabbits. Bangladesh J Pharmacol 2013; 8: 186–93.

(35.) Nagappa AN, Thakurdesai PA, Venkat RN, Singh J. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol 2003; 88: 45–50.

(36.) Channabasava GM, Chandrappa CP, Sadananda TS. In Vitro antidiabetic activity of three fractions of methanol extracts of Loranthus Micranthus, identification of phytoconstituents by GC-MS and possible mechanism identified by GEMDOCK method. Asian J Biomed Pharm Sci 2014; 4 (34): 34–41.

(37.) Parker SM, Moore PC, Johnson LM, Poitout V. Palmitate potentiation of glucose-induced insulin release: a study using 2-bromopalmitate. Metabolism 2003; 52 (10): 1367–71.

(38.) Zuraini A, Zamhuri KF, Yaacob A, et al. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (Bitter gourd). Molecules 2012; 17(8): 9631–40. doi:10.3390/molecules17089631

(39.) World Health Organisation. Diet, nutrition, and the prevention of chronic diseases. World Health OrganisationTechnical Report Series 2003; 916: 1-149.

(40.) Singh SK, Kesari AN, Gupta RK, Jaiswal D, Watal G. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats. J Ethnopharmacol 2007; 114: 174–9. doi:10.1016/j.jep.2007.07.039

(41.) Ebong PE, Atangwho IJ, Eyong EU, Egbung GE. The antidiabetic efficacy of combined extracts from two continental plants: Azadirachta indica (A. Juss) (Neem) and Vernonia amygdalina Del. (African bitter leaf). Am J Biochem Biotechnol 2008; 4(3): 239–44. doi: 10.3844/ajbbsp.2008.239.244

(42.) Ezejiofor AN, Okorie A, Orisakwe OE. Hypoglycaemic and tissue-protective effects of the aqueous extract of Persea americana seeds on alloxan-induced albino rats. Malays J Med Sci 2013; 20(5): 31–9.

(43.) Maniyar Y, Bhixavatimath P. Antihyperglycemic and hypolipidemic activities of aqueous extract of Carica papaya Linn. leaves in alloxan-induced diabetic rats. J Ayurveda Integr Med 2012; 3(2): 70–4. doi: 10.4103/0975-9476.96519

(44.) Muhtadia M, Primariantia AU, Sujonoa TA. Antidiabetic activity of durian (Durio zibethinus Murr.) and rambutan (Nephelium lappaceum L.) fruit peels in alloxan diabetic rats. Procedia Food Sci 2015; 3: 255–61. doi: 10.1016/j.profoo.2015.01.028

(45.) Chen PY, Csutora P, Veyna-Burke NA, Marchase RB. Glucose-6 phos-phate and Ca2+sequestration are mutually enhanced in microsomes from liver, brain, and heart. Diabetes 1998; 4 (6): 874–81. doi:10.2337/diabetes.47.6.874

(46.) Hakkim FL, Girija S, Kumar RS, Jalaluddeen MD. Effect of aqueous and ethanol extracts of Cassia auriculata L. flowers on diabetes using alloxan – induced diabetic rats. Int J Diabetes Metab 2007; 15: 100–6.

(47.) Tiwari AK, Rao JM. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 2002; 83: 30–8.

(48.) Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320–30. doi: 10.1016/S2221-1691(12)60032-X.

(49.) Singh R, Seherawat A, Sharma P. Hypoglycemic, antidiabetic and toxicological evaluation of Momordica dioica fruit extracts in alloxan-induced rats. J Pharmacol Toxicol 2011; 6(5): 454–67. doi: 10.3923/jpt.2011.454.467

(50.) Saeed MK, Deng Y, Dai R. Attenuation of biochemical parameters in streptozotocin-induced diabetic rats by oral administration of extracts and fractions of Cephalotaxus sinensis. J Clin Biochem Nutr 2008; 42: 21–8. doi: 10.3164/jcbn2008004

(51.) Mansour HA, Newairy AS, Yousef MI, Sheweita SA. Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology 2002; 170: 221–8.

(52.) Kanchana N, Mohamed AS. Hepatoprotective effect of Plumbago zeylanica on paracetamol induced liver toxicity in rats. Int J Pharm Pharm Sci 2011; 3: 151–4.

(53.) Afaf A, Faras EI, Elsawaf AL. Hepatoprotective activity of quercetin against paracetamol-induced liver toxicity in rats. Tanta Med J 2017; 45: 92–8. doi: 10.4103/tmj.tmj_43_16

(54.) Kesavulu MM, Giri R, Kameswara-Rao B, Apparao C. Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 2000; 26: 387–92.

(55.) Qujeq D, Rezvani T. Catalase (antioxidant enzyme) activity in streptozotocin-induced diabetic rats. Int J Diabetes Metab 2007; 15: 22–4.

(56.) Ceriello A. Oxidative stress and glycaemic regulation. Metabolism 2000; 49(2 suppl 1): 27–9.




DOI: https://doi.org/10.26873/SVR-1072-2020

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Our journal is indexed in:
Science Citation Index Expanded, Journal Citation Reports/Science Edition, Agris, Biomedicina Slovenica, CAB Abstracts, IVSI Urlich’s International Periodicals Directory
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si