GENETIC DIVERSITY OF EGYPTIAN ARABIAN HORSES FROM EL-ZAHRAA STUD BASED ON 14 TKY MICROSATELLITE MARKERS

Authors

  • Mary Sargious Genome Research Unit, Animal Health Research Institute, Dokki, Giza, Egypt
  • Ragab El-Shawarby Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Egypt
  • Mohamed Abo-Salem Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Egypt
  • Elham EL-Shewy Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Egypt
  • Hanaa Ahmed Genome Research Unit, Animal Health Research Institute, Dokki, Giza, Egypt
  • Naglaa Hagag Genome Research Unit, Animal Health Research Institute, Dokki, Giza, Egypt
  • sherif Ibrahim Ramadan Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt. http://orcid.org/0000-0001-5151-5520

DOI:

https://doi.org/10.26873/SVR-1041-2020

Abstract

The objectives of this study were, firstly, to conduct genetic characterization of Egyptian Arabian horses based on 14 TKY microsatellite markers, secondly, to investigate the powerfulness of these 14 TKY markers for parentage assignment of Arabian horses. A total of 101 horse samples including (Arabian = 71, Thoroughbred = 19 and Nooitgedacht = 11) were analysed by 14 TKY microsatellite markers. The PCR products were electrophoresed on Genetic analyzer 3500 with the aid of Liz standard. The basic measures of the allele’s size and genetic diversity were computed using bioinformatics software. The polymorphism of the TKY markers across the Arabian population showed moderate values for genetic diversity parameters; number of allele (NA) =8.143, effective number of allele (Ne) = 3.694, observed heterozygosity (HO) = 0.599, expected heterozygosity (HE) = 0.691, polymorphic Information Content (PIC) = 0.636 and Inbreeding coefficient (FIS)= 0.128. The combined probability of exclusion (CPE) value of the 14 TKY microsatellite loci of our Arabian horses was 0.9999. The results from current study confirm the applicability and efficiency of TKY microsatellite panel for evaluating the genetic diversity and parentage assignment of Egyptian Arabian horses.

Key words: Arabian horses; genetic diversity; microsatellite; TKY markers

 

GENSKA RAZNOVRSTNOST EGIPČANSKIH KONJ ARABSKE PASME IZ KOBILARNE EL-ZAHRAA NA PODLAGI 14 MIKROSATELITSKIH OZNAK TKY 

Izvleček: Nameni raziskave so bili genetska karakterizacija egipčanskih konj arabske pasme na podlagi 14 mikrosatelitskih označevalecv TKY ter raziskava moči 14 označevalcev TKY za dodelitev staršev arabskih konj. S pomočjo 14 mikrosatelitskih označevalcev TKY je bilo analiziranih 101 vzorcev konj (arabski = 71, čistokrvni = 19 in konji Nooitgedacht = 11). Produkte PCR so analizirali s pomočjo elektroforeze na genskem analizatorju 3500 s pomočjo Liz standarda. Osnovne mere velikosti alela in genske raznovrstnosti so bile izračunane s pomočjo programske opreme za bioinformatiko. Polimorfizem označevalcev TKY v arabski populaciji je pokazal zmerne vrednosti za parametre genske raznolikosti; število alelov (NA) = 8,143, efektivno število alelov (Ne) = 3,694, opazovana heterozigotnost (HO) = 0,599, pričakovana heterozigotnost (HE) = 0,691, polimorfna informacijska vsebina (PIC) = 0,636 in Inbriding koeficient (FIS) = 0,128. Skupna vrednost verjetnosti izključitve (CPE) 14 mikrosatelitskih lokusov TKY njihovih arabskih konj je bila 0,9999. Rezultati te raziskave potrjujejo uporabnost in učinkovitost mikrosatelitske plošče TKY za oceno genetske raznovrstnosti in starševske pripadnosti egipčanskih arabskih konj.

Ključne besede: arabski konji; genska raznolikost; mikrosatelit; markerji TKY

Author Biographies

Mary Sargious, Genome Research Unit, Animal Health Research Institute, Dokki, Giza, Egypt

Genome Research Unit, Animal Health Research Institute, Dokki, Giza, Egypt

sherif Ibrahim Ramadan, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.

Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.

References

(1.) Khanshour A, Conant E, Juras R, Cothran EG. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J Hered 2013; 104: 386–98.

(2.) Cothran E, Van Dyk E. Genetic analaysis of three South African horse breeds. J S Afr Vet Assoc 1998; 69: 120–5.

(3.) Bower MA, McGivney BA, Campana MG, et al. The genetic origin and history of speed in the Thoroughbred racehorse. Nat Commun 2012; 3: art. 643. doi: 10.1038/ncomms1644

(4.) Wallner B, Palmieri N, Vogl C, et al. Y chromosome uncovers the recent oriental origin of modern stallions. Curr Biol 2017; 27: 2029–35.

(5.) Bower MA, McGivney BA, Campana MG, et al. The genetic origin and history of speed in the Thoroughbred racehorse. Nat Commun 2012; 3: 1–8.

(6.) Kay J, Vamplew W. Encyclopedia of British horse racing. Routledge. 2012.

(7.) Hudson W. Whole-loop mitochondrial DNA D-loop sequence variability in Egyptian Arabian equine matrilines. PloS One 2017; 12: e0184309. doi: 10.1371/journal.pone.0184309

(8.) Vicente A, Carolino N, Gama L. Genetic diversity in the Lusitano horse breed assessed by pedigree analysis. Livest Sci 2012; 148: 16–25.

(9.) Curik I, Ferenčaković M, Sölkner J. Genomic dissection of inbreeding depression: a gate to new opportunities. Rev Bras Zootec 2017; 46: 773–82.

(10.) Todd ET, Ho SY, Thomson PC, Ang RA, Velie BD, Hamilton NA. Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. Sci Rep 2018; 8: art. 6167. doi: 10.1038/s41598-018-24663-x

(11.) Tarr CJ, Thompson PN, Guthrie AJ, Harper CK. The carrier prevalence of severe combined immunodeficiency, lavender foal syndrome and cerebellar abiotrophy in Arabian horses in South Africa. Equine Vet J 2014; 46: 512–4.

(12.) Ela NAA, Khalid A, Ahmed HA, Brooks SA. Molecular detection of severe combined immunodeficiency disorder in Arabian horses in Egypt. J Equine Vet Sci 2018; 68: 55–8.

(13.) Khanshour AM, Conant EK, Juras R, Cothran EG. Microsatellite analysis for parentage testing of the Arabian horse breed from Syria. Turk J Vet Anim Sci 2013; 37: 9–14.

(14.) Sargious MA, Bakry H, El-Shawarby R, Ahmed HA. Parentage testing of Arabian horse in Egypt using microsatellite DNA typing. Benha Vet Med J 2014; 1: 100–8.

(15.) Mahrous KF, Hassanane M, Mordy MA, Shafey HI, Hassan N. Genetic variations in horse using microsatellite markers. J Genet Eng Biotechnol 2011; 9: 103–9.

(16.) Tozaki T, Kakoi H, Mashima S, et al. Population study and validation of paternity testing for Thoroughbred horses by 15 microsatellite loci. J Vet Med Sci 2001; 63: 1191–7.

(17.) Tozaki T, Takezaki N, Hasegawa T, et al. Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup. J Hered 2003; 94: 374–80.

(18.) Kobayashi I, Akita M, Takasu M, et al. Genetic characteristics of feral Misaki horses based on polymorphisms of microsatellites and mitochondrial DNA. J Vet Med Sci 2019; 81: 707–11.

(19.) Dorji J, Tamang S, Tshewang T, Dorji T, Dorji TY. Genetic diversity and population structure of three traditional horse breeds of Bhutan based on 29 DNA microsatellite markers. PloS One 2018; 13: e0199376. doi: 10.1371/journal.pone.0199376

(20.) Achmann R, Huber T, Wallner B, Dovc P, Müller M, Brem G. Base substitutions in the sequences flanking microsatellite markers HMS3 and ASB2 interfere with parentage testing in the Lipizzan horse. Anim Genet 2001; 32: e52. doi: 10.1046/j.1365-2052.2001.0647k.x

(21.) Monies D, Abu Al Saud N, Sahar N, Meyer B. Population studies and parentage testing for Arabian horses using 15 microsatellite markers. Anim Genet 2011; 42: 225–6.

(22.) Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012; 28: 2537–9.

(23.) Huang K, Mi R, Dunn DW, Wang T, Li B. Performing parentage analysis in the presence of inbreeding and null alleles. Genetics 2018; 210: 1467–81.

(24.) Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 1995; 86: 248–9.

(25.) Ellegren H, Johansson M, Sandberg K, Andersson L. Cloning of highly polymorphic microsatellites in the horse. Anim Genet 1992; 23: 133–42.

(26.) Sereno FTPdS, Sereno JRB, Vega-Pla JL, Delgado JV. DNA testing for parentage verification in a conservation nucleus of Pantaneiro horse. Genet Mol Biol 2008; 31: 64–7.

Downloads

Published

2021-06-30

How to Cite

Sargious, M., El-Shawarby, R., Abo-Salem, M., EL-Shewy, E., Ahmed, H., Hagag, N., & Ramadan, sherif I. (2021). GENETIC DIVERSITY OF EGYPTIAN ARABIAN HORSES FROM EL-ZAHRAA STUD BASED ON 14 TKY MICROSATELLITE MARKERS. SLOVENIAN VETERINARY RESEARCH, 58(2). https://doi.org/10.26873/SVR-1041-2020

Issue

Section

Original Research Article