CHICKEN ANAEMIA VIRUS IMPAIRS NITRIC OXIDE PRODUCTION IN HD11 CHICKEN MACROPHAGES

Katja Ester, William Lauman Ragland

Abstract


Immunosuppressive viruses cause substantial economic losses to the poultry industry. Chicken anaemia virus (CAV) causes severe disease in young chickens, whereas subclinical infection in older birds causes immunosuppression. In this study, we addressed the ability of CAV to interfere with production of antimicrobial molecule nitric oxide (NO) by macrophages. NO production in chicken macrophage cell line HD11 was induced using both Toll-like receptor 4 agonist, bacterial lipopolysaccharide, and an immune modulator, interferon-γ. In addition, we treated macrophages with CAV propagated in chicken lymphoblastoid cells. The levels of NO were measured by the Griess reaction. Addition of CAV decreased both the interferon-γ and the lipopolysaccharide associated induction of NO. Observed effect was not caused by CAV-related cytotoxicity, as no decrease in number of viable cells was observed. Although CAV could not completely abrogate NO production, attenuation of NO induction was clearly present. We have previously shown that CAV interferes with the expression of interferons in chickens during subclinical infection. Since the signalling pathways of expression of interferons and type 2 nitric oxide synthase, enzyme involved in NO formation, overlap, we conclude that measured decrease in NO levels is a consequence of CAV interference with interferon and NO synthase signalling. Regardless of the fact whether the attenuation of NO serves as a viral primary defence, or is only a secondary effect, it could impair the immune response to other pathogens and contribute to the global immunosuppression in chicken houses.

Key words: chicken; immunosuppression; chicken anaemia virus (CAV); macrophage; nitric oxide (NO)

 

VIRUS PIŠČANČJE ANEMIJE VPLIVA NA PROIZVODNJO DUŠIKOVIH OKSIDOV V MAKROFAGIH PIŠČANEV HD11

Povzetek: Imunosupresivni virusi povzročajo velike gospodarske izgube v perutninski industriji. Virus piščančje anemije (CAV) pri mladih piščancih povzroča hudo bolezen, medtem ko subklinična okužba pri starejših pticah povzroča oslabljen imunski odziv. V tej raziskavi je bil spremljan vpliv CAV na proizvodnjo dušikovih oksidov (NO) v makrofagih. Proizvodnja NO v piščančjih makrofagih v celični liniji HD11 je bila sprožena z uporabo agonista Toll-u podobnega receptorja 4, bakterijskega lipopolisaharida in imunskega modulatorja interferona-γ, makrofagi pa so bili okuženi s CAV, razmnoženim v piščančjih limfoblastoidnih celicah. Ravni NO so izmerili po Griessovi reakciji. Prisotnost CAV je zmanjšala proizvodnjo NO, spodbujeno tako z interferonom-γ, kot z lipopolisaharidom. Opaženega učinka ni povzročila citotoksičnost, povezana s CAV, saj ni bilo opaziti zmanjšanja števila živih celic. Čeprav CAV ni popolnoma zavrla nastajanja NO, je bilo očitno prisotno zmanjšanje nastajanja NO. Pred tem so pokazali, da CAV moti izražanje interferonov pri piščancih med subklinično okužbo. Ker se poti znotrajceličnega prenosa urejanja izražanja interferonov in sintaze dušikovih oksidov tipa 2, encima, ki sodeluje pri tvorbi NO, prekrivajo, predvidevamo, da je izmerjeno znižanje ravni NO posledica motenj CAV pri znotrajceličnem prenosu sporočila interferona do sintaze dušikovih oksidov. Ne glede na to, ali zaviranje nastajanja NO služi kot primarna virusna obramba ali je le sekundarni učinek, lahko poslabša imunski odziv na druge patogene in prispeva k splošnemu zmanjšanju imunskega odziva v kurnikih ali na kokošjih farmah.

Ključne besede: piščanci; zmanjšanje imunskega odziva; virus piščančje anemije (CAV); makrofagi; dušikov oksid (NO)


Full Text:

PDF

References


(1.) USDA. Livestock and poultry: world markets and trade. Washington : United States Department of Agriculture, Foreign Agricultural Service Office of Global Analysis, 2019. https://www.fas.usda.gov/data/livestock-and-poultry-world-markets-and-trade

(2.) Eurostat. Poultry meat production in EU at new high in 2018. Products Eurostat News, 2018. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20190325-1

(3.) U. S. Poultry and egg association. Economic data 2019. Tucker, Georgia, 2019. http://www.poultryegg.org/economic_data/

(4.) Todd D, Creelan JL, Mackie DP, Rixon F, McNulty MS. Purification and biochemical characterization of chicken anaemia agent. J Gen Virol 1990; 71: 819–23. https://doi.org/10.1099/0022-1317-71-4-819

(5.) Rosario K, Breitbart M, Harrach B, et al. Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol 2017; 162: 1447–63. https://doi.org/0.1007/s00705-017-3247-y

(6.) Jeurissen SH, Wagenaar F, Pol JM, van der Eb AJ, Noteborn MH. Chicken anaemia virus causes apoptosis of thymocytes after in vivo infection and of cell lines after in vitro infection. J Virol 1992; 66: 7383–8.

(7.) McNulty MS, McIlroy SG, Bruce DW, Todd D. Economic-effects of subclinical chicken anaemia agent infection in broiler-chickens. Avian Dis 1991; 35: 263–8.

(8.) Rimondi A, Pinto S, Olivera V, et al. Comparative histopathological and immunological study of two field strains of chicken anaemia virus. Vet Res 2014; 45: e102. https://doi.org/10.1186/s13567-014-0102-y

(9.) Adair BM. Immunopathogenesis of chicken anaemia virus infection. Develop Comp Immunol 2000; 24: 247–55.

(10.) Zhang Y, Cui N, Han N, Wu J, Cui Z, Su S. Depression of vaccinal immunity to Marek's disease by infection with chicken infectious anaemia virus. Front Microbiol 2017; 8: e1863. https://doi.org/10.3389/fmicb.2017.01863

(11.) Su Q, Wang T, Meng F, Cui Z, Chang S, Zhao P. Synergetic pathogenicity of Newcastle disease vaccines LaSota strain and contaminated chicken infectious anaemia virus. Poult Sci 2019; 98: 1985–92. https://doi.org/10.3382/ps/pey555

(12.) Erfan AM, Selim AA, Helmy SA, Eriksson P, Naguib MM. Chicken anaemia virus enhances and prolongs subsequent avian influenza (H9N2) and infectious bronchitis viral infections. Vet Microbiol 2019; 230: 123–9. https://doi.org/10.1016/j.vetmic.2019.01.024

(13.) McNulty MS. Chicken anaemia agent: a review. Avian Pathol 1991; 20: 187–203. https://doi.org/10.1080/03079459108418756

(14.) Giotis ES, Rothwell L, Scott A, et al. Transcriptomic profiling of virus-host cell interactions following Chicken anaemia virus (CAV) infection in an in vivo model. PLoS One 2015; 10: e0134866. https://doi.org/10.1371/journal.pone.0134866

(15.) Ragland WL, Novak R, El-Attrache J, Savić V, Ester K. Chicken anaemia virus and infectious bursal disease virus interfere with transcription of chicken IFN-alpha and IFN-gamma mRNA. J Interferon Cytokine Res 2002; 22: 437–41. https://doi.org/10.1089/10799900252952226

(16.) McConnell CD, Adair BM, McNulty MS. Effects of chicken anaemia virus on macrophage function in chickens. Avian Dis 1993; 37: 358–65.

(17.) Kaspers B, Kothlow S, Butter C. Avian antigen presenting cells. In: Davison F, Kaspers B, Schat KA, eds. Avian immunology. Amsterdam : Academic Press, Elsevier, 2008: 183–202. https://doi.org/10.1016/B978-012370634-8.50012-3

(18.) Beug H, von Kirchbach A, Doderlein G, Conscience J-F, Graf T. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 1979; 18: 375–90.

(19.) He H, Genovese KJ, Nisbet DJ, Kogut MH. Involvement of phosphatidylinositol-phospholipase C in immune response to Salmonella lipopolysacharide in chicken macrophage cells (HD11). Int Immunopharmacol 2006; 6: 1780–7. https://doi.org/10.1016/j.intimp.2006.07.013

(20.) Wu Z, Kaiser P. Antigen presenting cells in a non-mammalian model system, the chicken. Immunobiology 2011; 216: 1177–83. https://doi.org/10.1016/j.imbio.2011.05.012

(21.) Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36: 161–78. https://doi.org/10.1016/j.it.2015.01.003

(22.) Digby MR, Lowenthal JW. Cloning and expression of the chicken interferon-gamma gene. J Interferon Cytokine Res 1995; 15: 939–45. https://doi.org/10.1089/jir.1995.15.939

(23.) Yuasa N. Propagation and infectivity titration of the Gifu-1 strain of chicken anaemia agent in a cell line (MDCC-MSB1) derived from Marek’s disease lymphoma. Natl Inst Anim Health Q 1983; 23: 13–20.

(24.) Kang S, Brown HM, Hwang S. Direct antiviral mechanisms of interferon-gamma. Immune Netw. 2018; 18: e33. https://doi.org/10.4110/in.2018.18.e33

(25.) Crowley TM, Haring VR, Moore R. Chicken anaemia virus: an understanding of the in-vitro host response over time. Viral Immunol 2011; 24: 3–9. https://doi.org/10.1089/vim.2010.0064.

(26.) Federica Giardi M, La Torre C, Giansanti F, Botti D. Effects of transferrins and cytokines on nitric oxide production by an avian lymphoblastoid cell line infected with Marek's disease virus. Antiviral Res. 2009; 81: 248–52. https://doi.org/10.1016/j.antiviral.2008.12.008

(27.) Zöller B, Redman-Müller I, Nanda I, et al. Sequence comparison of avian interferon regulatory factors and identification of the avian CEC-32 cell as a quail cell line. J Interferon Cytokine Res 2000; 20: 711–7. https://doi.org/10.1089/10799900050116417

(28.) Deshmukh SD, Müller S, Hese K, et al. NO is a macrophage autonomous modifier of the cytokine response to streptococcal single-stranded RNA. J Immunol 2012; 188: 774–80. https://doi.org/10.4049/jimmunol.1101383

(29.) Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 2006; 124: 767–82. https://doi.org/10.1016/j.cell.2006.01.034

(30.) Abdul-Cader MS, Amarasinghe A, Abdul-Careem MF. Activation of toll-like receptor signaling pathways leading to nitric oxide-mediated antiviral responses. Arch Virol 2016; 161: 2075–86. https://doi.org/10.1007/s00705-016-2904-x.

(31.) Kujundzić RN, Lowenthal JW. The role of tryptophan metabolism in iNOS transcription and nitric oxide production by chicken macrophage cells upon treatment with interferon gamma. Immunol Lett 2008; 115: 153–9. https://doi.org/10.1016/j.imlet.2007.11.003

(32.) Chiarugi A, Rovida E, Dello Sbarba P, Moroni F. Tryptophan availability selectively limits NO-synthase induction in macrophages. J Leukoc Biol 2003; 73: 172–7. https://doi.org/10.1189/jlb.0502220

(33.) He H, Genovese K J, Kogut M H. Modulation of chicken macrophage effector function by T (H)1/T(H)2 cytokines. Cytokine 2011; 53: 363–9. https://doi.org/10.1016/j.cyto.2010.12.009

(34.) Amarasinghe A, Abdul-Cader MS, Nazir S, et al. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions. PLoS One 2017; 12: e0181801. https://doi.org/10.1371/journal.pone.0181801

(35.) Gotoh T, Oyadomari S, Mori K, Mori M. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J Biol Chem 2002; 277: 12343–50. https://doi.org/10.1074/jbc.M107988200.




DOI: https://doi.org/10.26873/SVR-1012-2020

Refbacks

  • There are currently no refbacks.


SLOVENIAN VETERINARY RESEARCH, Veterinary Faculty
Gerbičeva 60, SI-1000 Ljubljana, Slovenia, T: +386 (0)1 47 79 100, F: +386 (0)1 28 32 243, E: slovetres@vf.uni-lj.si
Published by computing.si