DEVELOPMENT AND VALIDATION OF A RP- HPLC METHOD FOR DETERMINATION OF DIFLOXACIN RESIDUES IN DIFFERENT RABBIT TISSUES

Ahmed A. Said¹, Abd Elaleem F. Abd Elaleem¹, Sameh M. El-Nabtiy⁴, Sherief S. Abd Elhafeez²*

¹Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, ²Memphis for pharmaceutical and chemical industries company, Amerya, Cairo, Egypt

*Corresponding author, E-mail: sheriefsabry84_doctor@hotmail.com

Abstract: The occurrence of antibiotic residues in food of animal origin is attributed to incorrect drug administration or neglecting withdrawal times. These residues cause a lot of human health hazards, so it is important to control their presence. The aim of our study to evaluate a reversed phase- high performance liquid chromatography (RP- HPLC) method for determination of difloxacin residues in different rabbit tissues and serum post intramuscular injection of 5 mg/kg b.wt for 5 days and to investigate the withdrawal period of difloxacin in different rabbit tissues to be safe for human consumption. This method was validated to meet United States Pharmacopeia (USP) and the International Council for Harmonisation of Technical Requirements for Pharmaceuticals (ICH) guidelines. The separation was processed using buffer of triethylamine (pH:3.5) and acetonitrile (80 to 20, v.to v.) solvent on RP- C18 column at 35°C to obtain the ideal peak at 6.752 min. the separation was achieved at wavelength of 280 nm. Validation of analytical method has been done to keep up specifications such as specificity, linearity, precision, accuracy, sensitivity, repeatability, and robustness. The study showed high recovery, low detection limit, good precision. In addition, the rapid steps of the extraction process to be more economical and meet the requirements of green chemistry through minimum use of chemicals during sample extraction with little chemical waste production. Finally, residues of difloxacin were less than recommended maximum residue limits (MRL); 300, 600, and 800 ppb for muscle, kidneys, and liver; respectively on 1st day after treatment. Thus, Rabbit’s meat could be eaten safely on the 1st day after the end of treatment with 5 mg difloxacin/kg for 5 days.

Key words: difloxacin; residues; rabbit; tissues; HPLC; validation

Introduction

Fluoroquinolones (FQs) are an imperative synthetic antibiotics group, newly invented, that treats numerous types of infection in veterinary and human medication. This group of antibiotics shows great action against a wide range of Gram negative and positive microbes via inhibition of DNA gyrase or topoisomerase II enzymes (1). In the veterinary field, these systemic antibiotics treat systemic troubles including respiratory, gastro-intestinal, urinary tract, and skin infections (2).

Difloxacin (DIF) is a fluoroquinolone carboxylic acid that was industrialized in the 1980s. It is stared as the perfect antibiotic in treatment of definite bacterial infections in veterinary medicine (3-4), due to its low toxicity, and high antibacterial activity against an extensive variety of Gram-negative and positive anaerobes and aerobes. Its antibacterial activity is better than ciprofloxacin and enrofloxacin (5). It is used in chickens and turkeys for treatment of chronic respiratory infections caused by Escherichia coli and Mycoplasma gallisepticum, in turkeys for the treatment of Pasteurella multocida infections, In Cattle for the treatment of bovine respiratory
Materials and methods

Drug

Dicural® (100 mg per ml), Obtained from Fort Dodge Animal Health, Holland. It is administered via intramuscular (IM) route at a dosage of (5 mg per kg) for 5 days (11).

Experimental animals and design

Twenty-five male healthy New Zealand rabbits (2 to 2.5 kg b.wt) have been used, fed on antibiotics-free feed, received ad libitum water and housed in batteries under similar conditions in a postgraduate research laboratory, Faculty of Veterinary Medicine, Zagazig University. Blank samples were obtained from 4 rabbits (control) for spiked samples preparation in method validation and verification. Twenty-one rabbits were injected difloxacin intramuscular (5 mg/kg) for 5 successive days. Three rabbits were slaughtered in each experiment at the 1st, 3rd, 5th, 7th, 9th, 15th, and 21st day post the final dosage. The samples from blood, muscles, liver, and kidneys were collected for quantification of difloxacin residues using HPLC assay according to Sharma et al. (12). The procedure of animal experiments was illustrated in Figure (1).

Sampling section

Animals that are subject to procedures exposed for a minimal pain do not require the use of pain-relieving drugs. The blood samples were taken from ear vein immediately before slaughtering in clean tubes for separation of serum, and the samples of muscle, kidneys, and liver were taken in polypropylene tubes after slaughtering using knife to cut a major blood vessel without using anesthesia (Halal slaughter).

Ethical approval

All applicable governmental rules and organizational procedures for animal welfare were followed during this research. (ZU-IACUC Committee, ZU-IACUC/2/F/115/2020 and 22-10-2020).

Apparatus and chromatographic conditions

HPLC, Agilent Series 1200 quaternary gradient pump, Series 1200 autosampler, Series 1200 UV Vis detector, and HPLC 2D chemistation software were used. The chromatographic column was RP-C18 column (4.6 mm, 100 mm, 5 µm), surveyor, Thermo scientific company, USA. Volume of injection: 20 µl, rate of flow: 0.8 ml per min. and temperature of column: 35°C, UV- Detector: 280 nm and the mobile phase: buffer of triethylamine at pH 3.5 to acetonitrile (80 to 20, v to v).
Development and validation of a RP-HPLC method for determination of difloxacin residues in...

Figure 1: Flowchart of experimental design

Chemical reagents

Deionized water and acetonitrile of HPLC-grade (Fisher Scientific Co.). Sodium hydroxide (Honeywell Co. Germany). Triethylamine and Orthophosphoric acid (Merck Specialties Pvt. Ltd., India). Reference standard of Difloxacin HCL (Sigma-Aldrich, USA).

Preparation of standard solutions

Stock standard solution of difloxacin complex was formulated at a 1 mg/ml (1000 ppm) concentration in deionized water and stored in amber glass at 4°C. It was diluted with triethylamine buffer solution (0.5%, pH 3.5) to obtain the fortification solution at a concentration of 10 ppm, which should be freshly prepared daily. The calibration curve was created by fortifying blank rabbit tissues, blank serum with various volumes of fortification solution to yield a concentration range of 200-4000 ppb (calibration samples) and spike blank tissues to prepare quality control (QC) samples at 150, 300 and 600 ppb for muscle, at 400, 800 and 1600 ppb for liver, at 200, 600 and 1200 ppb for kidneys and for serum at a low level of 200 ppb, moderate level 2000 ppb and at a high level 4000 ppb.

Analytical procedures

Extraction of difloxacin was performed according to Sharma et al. (12); two grams of tissue were precisely weighted into a polypropylene centrifuge tube. Four ml water (deionized) was incorporated. Samples were homogenized, two milliliors of them (0.5 ml serum) were taken, then add 1.0 ml of amine buffer (0.5 ml for serum) and left for fifteen min. The mixture has been filtered and kept aside for fifteen min. The tube was firmly closed and vortexed for 5 minutes after adding 2.0 ml of acetonitrile (1 ml for serum). This mixture has been centrifuged for half an hour at 4000 rpm. Then this supernatant has been taken to other tube and centrifuged one more time at 8000 rpm for half an hour. Then the supernatant has been filtered using 0.2 μm syringe filter.

Validation of the method

It is the procedure of determining the required performance through an analytical method and ensuring that the method under study has performance abilities with the requirements of application (13).

This method has been validated to match requirements of ICH and USP (14, 15). Linearity and range, intra-day precision and inter-day precision, recovery, limits of detection and quantification (LOD and LOQ), robustness, system suitability testing (SST), and specificity were determined using fortified samples and quality control (QC) samples.

Statistical analysis

This obtained result was demonstrated as mean ± standard deviation (SD). These parameters have been analyzed statistically using descriptive statistics via SPSS Inc., version 20.0, Chicago, IL, USA (16).

Results

Results of method validation

Results in Table (1) summarize the parameters of method validation in different matrices (serum, muscle, liver, and kidneys) which demonstrated that all the obtained results meet the acceptance criteria set by the specialized agencies (14, 15) as showed in Figures (2).

The difloxacin chromatograms either in serum and different tissues were demonstrated at a specific retention time at 6.572 min. There is no intervention between peaks of any matrix impurities and the intended peak (Figures 3).
Table 1: Validation sheet of difloxacin by HPLC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Serum</th>
<th>Muscle</th>
<th>Liver</th>
<th>Kidney</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention time (min.)</td>
<td>6.752</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range (ppb)</td>
<td>200-4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.367</td>
<td>0.3468</td>
<td>0.3207</td>
<td>0.351</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.153</td>
<td>-0.07</td>
<td>-6.927</td>
<td>0.849</td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.99998</td>
<td>0.99986</td>
<td>0.99981</td>
<td>0.99969</td>
<td>≥ 0.99</td>
</tr>
<tr>
<td>LOD (ppb)</td>
<td>6.11</td>
<td>15.9</td>
<td>17.2</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td>LOQ (ppb)</td>
<td>18.3</td>
<td>47.7</td>
<td>51.5</td>
<td>72.8</td>
<td></td>
</tr>
<tr>
<td>Recovery (%)</td>
<td>98.1-100.3</td>
<td>91.8-96.1</td>
<td>81.7-87.4</td>
<td>86.9-98</td>
<td>85-115 %</td>
</tr>
<tr>
<td>Intra-day precision (CV %)</td>
<td>0.23</td>
<td>0.37</td>
<td>0.57</td>
<td>0.22</td>
<td>≤ 1%</td>
</tr>
<tr>
<td>Inter-day precision (CV %)</td>
<td>0.71</td>
<td>0.84</td>
<td>0.92</td>
<td>1.2</td>
<td>≤ 2%</td>
</tr>
<tr>
<td>Pooled robustness (CV %)</td>
<td>0.95</td>
<td>1.04</td>
<td>1.5</td>
<td>0.89</td>
<td>≤ 2%</td>
</tr>
<tr>
<td>Tailing factor</td>
<td>1.02±0.01</td>
<td>1.01±0.01</td>
<td>1.01±0.01</td>
<td>1.03±0.02</td>
<td>≤ 2</td>
</tr>
<tr>
<td>SST*</td>
<td>0.91±0.01</td>
<td>0.92±0.01</td>
<td>0.93±0.01</td>
<td>0.91±0.01</td>
<td>≤ 1</td>
</tr>
<tr>
<td>Theoretical plate</td>
<td>6800±41</td>
<td>6640±32</td>
<td>6851±35</td>
<td>6440±60</td>
<td>≥ 2000</td>
</tr>
</tbody>
</table>

* Results expressed as mean ± SD

Results of difloxacin residues in different rabbit tissues

The concentrations of difloxacin antibiotic residues in serum, muscle, liver, and kidneys were illustrated in the Table (2) and Figure (4) after intramuscular injection in healthy rabbits for 5 successive days showing that difloxacin remained within detectable limit till 3rd day in rabbit’s serum and muscle and till 5th day in kidneys, but still detected in liver until the 9th day following intramuscular injection of difloxacin. All obtained concentrations of difloxacin in analyzed tissues were below the maximum residue limits recommended by EMEA (8) at 1st day following last intramuscular injection of difloxacin.

Figure 2: Calibration curves for the analytical method for difloxacin quantification in rabbit serum (A), muscle (B), liver (C), and kidneys (D) in the range of 200 to 4000 ppb
Development and validation of a RP-HPLC method for determination of difloxacin residues in...

Figure 3: Chromatograms of difloxacin at a concentration of 1000 ppb (A: pure standard, B: serum, C: liver, D: kidney, E: muscle) at retention time 6.752 min

Table 2: Difloxacin concentrations (ppb) in different rabbit’s tissues and serum after intramuscular injection for 5 days (n=3)

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>3rd</th>
<th>5th</th>
<th>7th</th>
<th>9th</th>
<th>15th - 21st</th>
<th>MRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>120±2.5</td>
<td>62±4.4</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>146±8.5</td>
<td>58.3±3.5</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
<td>300</td>
</tr>
<tr>
<td>Liver</td>
<td>730.7±7</td>
<td>317.3±2.5</td>
<td>101.3±2.1</td>
<td>188±9.2</td>
<td>58.7±2.1</td>
<td>Nd</td>
<td>800</td>
</tr>
<tr>
<td>Kidneys</td>
<td>246.7±5.1</td>
<td>121±3.6</td>
<td>77.3±2.5</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
<td></td>
</tr>
</tbody>
</table>

Results expressed as mean ± SD

Figure 4: Semilogarithmic plot showing difloxacin residues in different rabbit tissues and serum at various intervals following intramuscular dose (5 mg/kg b.wt) for 5 days
Discussion

The obtained data of validation and verification were found to meet all acceptance criteria of validation recommended by ICH and USP (14, 15). The tailing factor was found to be more than 2 and theoretical plate’s ≥ 2000 that indicate ideal peak of difloxacin with retention time at 6.572 min. Validation of new analytical method was finished to match with specifications like specificity, sensitivity linearity, accuracy, repeatability, precision, and robustness studies.

Antibiotics are being used on wide scale for treating and preventing many types of disease in animals and humans. Difloxacin supplies important empirical treatment of a wide spectrum of Gram negative and positive microbes and also Chlamydia, Rickettsia, and Mycoplasma. In veterinary medication, difloxacin appears having a strong ability to treat recurrent or severe infections in urinary tract, skin, or soft tissue. The abuses of these antibiotics cause drug-resistance to bacteria and removing it from your vet’s arsenal of antimicrobial agents (17-19). The proper use of potent antibiotics, like difloxacin, in food-producing animals is required to maintain the safety and efficacy of difloxacin in future.

Rabbit meat is valued for its nutritional properties because it is lean, rich in proteins of high biological value, low in cholesterol content and high in linolenic acid. It plays an important role in the national economy and offers excellent nutritive and dietetic properties. It can be concluded that rabbit meat is healthier over other meats frequently used in human nutrition (20). The accessibility of extra safe medicines for minor food spp. for example the rabbit is vital for consumer health. When novel therapeutics become registered, off-label and illegal usages of these therapeutics are mostly declined (21, 22) and frequencies of antibiotic resistance are less periodic (23, 24). The abuse of fluoroquinolones in food-producing animals results in drug-resistance marvels (25) and severe pathological alterations in the kids and teens joints (26).

Tissue depletion of difloxacin post IM daily injection of difloxacin (5 mg per kg BW for 5 successive days) has been studied. As far as we know, this is the first work to discuss the depletion of difloxacin residues in tissue.

Difloxacin was rapidly absorbed and distributed into different organs from injection site, these findings agree with Abd El-Aty et al. (11) who found that difloxacin was rapidly absorbed in rabbits after single intramuscular injection of 5 mg/kg body weight with short absorption half lifetime (t1/2,ab) of 0.5 hour.

Concentrations of difloxacin in liver, kidneys, and muscles tissues were initially high and over time decreased, still detected to 3rd day in serum and muscle, to 5th day in kidneys, but to 9th day in liver. The mean concentrations of difloxacin in the checked tissues were less than the MRL at 1st day after last IM injection. These results in line with Ligabue et al. (27) who investigated the elimination and distribution of the fluoroquinolone antibiotic marbofloxacin in rabbit liver, muscles, and kidneys after administration of marbofloxacin at 2 mg/kg b.wt for 5 successive days. The concentration of residuals in muscles, liver, and kidneys tissues were determined post treatment by HPLC. Marbofloxacin was distributed rapidly and eliminated rapidly from tested tissues of rabbits. The concentrations were more in the kidneys and liver than in muscles. However, 48 hours post the treatment, the concentrations of marbofloxacin decreased under the MRL determined for this antibiotic in pigs and cattle. Similarly, the withdrawal period for chicken and turkey was 24 hours (6).

Difloxacin recommended for treatment of the major diseases of rabbits, due to its elimination short time as demonstrated in the current work, use of this antibiotic can be extended to rabbit’s therapeutic treatments as recommended by Ligabue et al. (27).

Highest concentrations of difloxacin were detected in liver and kidneys, these findings agree with Ligabue et al. (27) who mentioned that marbofloxacin was rapidly distributed and eliminated from rabbit tissues. Concentrations of marbofloxacin were greater in the liver and kidneys than in muscle after intramuscular injection of marbofloxacin at 2 mg/ kg of body weight for five days, as the remaining levels in liver, kidneys, and muscular tissues were analyzed post-treatment using high-performance-liquid-chromatography attached with fluorescence-detector.

These findings agreed with that recorded by Abou El-Nil (28) who observed that following
intradarmuscular injection of 10 mg pefloxacin /kg b.wt in rabbits for 5 succeeding days, the highest level was detected in kidneys at 12 hours from last dose and then not detected on 44 hours post treatment followed by the liver, then muscle and its level showed significant decrease 72 hours. Also, Abdel El-Aziz et al. (29) mentioned that the tissue concentrations of fluoroquinolones were higher in kidneys and liver following oral treatment of infected chicken. On the same line Shams et al. (30) found that post oral daily administrations of 10 mg pefloxacin /kg once for five sequential days in chickens, kidneys and liver have the highest level of the drug.

Conclusion

Finally, the tissue residues of difloxacin were lower than the recommended MRL in the kidneys, liver and muscles of rabbits at the 1st day post-treatment. Thus, Rabbit’s meat could be consumed safely without any health hazards from the 1st day after end of treatment with 5 mg difloxacin/kg for 5 days.

Acknowledgment

My sincere gratitude and deepest thanks to Maha S. Abd Elhafeez, researcher of pharmacology, chemistry, toxicology, and feed deficiency department, AHRI, Agricultural Research Center, Dokki, Giza, Egypt for her support and cooperation in analytical part.

Sherief S. Abd Elhafeez carried out the experimental design, HPLC analysis of drug residues, statistical analysis of data, and wrote the article. Ahmed A. Said, Abd El-Alim F. Abd El-Alim and Sameh M. El-Nabity critically revised the manuscript and served as scientific advisors.

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

23. Taylor DJ. EU ban on four antibiotic growth promoters. Vet Rec 1999, 144:158

